High-Performance Multifunctional Graphene-PLGA Fibers: Toward Biomimetic and Conducting 3D Scaffolds

被引:44
作者
Esrafilzadeh, Dorna [1 ,2 ]
Jalili, Rouhollah [1 ]
Stewart, Elise M. [1 ]
Aboutalebi, Seyed H. [3 ]
Razal, Joselito M. [1 ,4 ]
Moulton, Simon E. [1 ,5 ]
Wallace, Gordon G. [1 ]
机构
[1] Univ Wollongong, Intelligent Polymer Res Inst, ARC Ctr Excellence Electromat Sci, AIIM Facil, Innovat Campus, North Wollongong, NSW 2522, Australia
[2] Univ Wollongong, IHMRI, Wollongong, NSW 2522, Australia
[3] Inst Res Fundamental Sci IPM, Condensed Matter Natl Lab, Tehran 193955531, Iran
[4] Deakin Univ, Inst Frontier Mat, Geelong, Vic 3216, Australia
[5] Swinburne Univ Technol, Fac Sci Engn & Technol, Hawthorn, Vic 3122, Australia
基金
英国医学研究理事会; 澳大利亚研究理事会;
关键词
POLY(LACTIC ACID); OXIDE NANOSHEETS; CARBON NANOTUBE; POLYLACTIDE/GRAPHENE COMPOSITES; POLY(LACTIC-CO-GLYCOLIC ACID); ELECTRICAL-STIMULATION; MECHANICAL-PROPERTIES; POLYMER COMPOSITES; CELL ATTACHMENT; FACILE ROUTE;
D O I
10.1002/adfm.201505304
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of electrically conducting fibers based on known cytocompatible materials is of interest to those engaged in tissue regeneration using electrical stimulation. Herein, it is demonstrated that with the aid of rheological insights, optimized formulations of graphene containing spinnable poly(lactic-co-glycolic acid) (PLGA) dopes can be made possible. This helps extend the general understanding of the mechanics involved in order to deliberately translate the intrinsic superior electrical and mechanical properties of solution-processed graphene into the design process and practical fiber architectural engineering. The as-produced fibers are found to exhibit excellent electrical conductivity and electrochemical performance, good mechanical properties, and cellular affinity. At the highest loading of graphene (24.3 wt%), the conductivity of as-prepared fibers is as high as 150 S m(-1) (more than two orders of magnitude higher than the highest conductivity achieved for any type of nanocarbon-PLGA composite fibers) reported previously. Moreover, the Young's modulus and tensile strength of the base fiber are enhanced 647- and 59-folds, respectively, through addition of graphene.
引用
收藏
页码:3105 / 3117
页数:13
相关论文
共 88 条
[11]   Foldable Conductive Cellulose Fiber Networks Modified by Graphene Nanoplatelet-Bio-Based Composites [J].
Cataldi, Pietro ;
Bayer, Ilker S. ;
Bonaccorso, Francesco ;
Pellegrini, Vittorio ;
Athanassiou, Athanassia ;
Cingolani, Roberto .
ADVANCED ELECTRONIC MATERIALS, 2015, 1 (12)
[12]   Carbon-Based Nanomaterials: Multifunctional Materials for Biomedical Engineering [J].
Cha, Chaenyung ;
Shin, Su Ryon ;
Annabi, Nasim ;
Dokmeci, Mehmet R. ;
Khademhosseini, Ali .
ACS NANO, 2013, 7 (04) :2891-2897
[13]   Poly(lactic acid)/Graphene Nanocomposites Prepared via Solution Blending Using Chloroform as a Mutual Solvent [J].
Chen, Yanhua ;
Yao, Xiayin ;
Zhou, Xufeng ;
Pan, Zhijuan ;
Gu, Qun .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (09) :7813-7819
[14]   Graphene Nanoplatelets as Novel Reinforcement Filler in Poly(lactic acid)/Epoxidized Palm Oil Green Nanocomposites: Mechanical Properties [J].
Chieng, Buong Woei ;
Ibrahim, Nor Azowa ;
Yunus, Wan Md Zin Wan ;
Hussein, Mohd Zobir ;
Silverajah, V. S. Giita .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2012, 13 (09) :10920-10934
[15]   Biomedical Applications of Graphene and Graphene Oxide [J].
Chung, Chul ;
Kim, Young-Kwan ;
Shin, Dolly ;
Ryoo, Soo-Ryoon ;
Hong, Byung Hee ;
Min, Dal-Hee .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (10) :2211-2224
[16]   Liquid Exfoliation of Defect-Free Graphene [J].
Coleman, Jonathan N. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (01) :14-22
[17]   Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials [J].
Coleman, Jonathan N. ;
Lotya, Mustafa ;
O'Neill, Arlene ;
Bergin, Shane D. ;
King, Paul J. ;
Khan, Umar ;
Young, Karen ;
Gaucher, Alexandre ;
De, Sukanta ;
Smith, Ronan J. ;
Shvets, Igor V. ;
Arora, Sunil K. ;
Stanton, George ;
Kim, Hye-Young ;
Lee, Kangho ;
Kim, Gyu Tae ;
Duesberg, Georg S. ;
Hallam, Toby ;
Boland, John J. ;
Wang, Jing Jing ;
Donegan, John F. ;
Grunlan, Jaime C. ;
Moriarty, Gregory ;
Shmeliov, Aleksey ;
Nicholls, Rebecca J. ;
Perkins, James M. ;
Grieveson, Eleanor M. ;
Theuwissen, Koenraad ;
McComb, David W. ;
Nellist, Peter D. ;
Nicolosi, Valeria .
SCIENCE, 2011, 331 (6017) :568-571
[18]   Liquid-Phase Exfoliation of Nanotubes and Graphene [J].
Coleman, Jonathan N. .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (23) :3680-3695
[19]   Graphene-Based Polymer Composites and Their Applications [J].
Das, Tapan K. ;
Prusty, Smita .
POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2013, 52 (04) :319-331
[20]   Tubular micro-scale multiwalled carbon nanotube-based scaffolds for tissue engineering [J].
Edwards, Sharon L. ;
Church, Jeffrey S. ;
Werkmeister, Jerome A. ;
Ramshaw, John A. M. .
BIOMATERIALS, 2009, 30 (09) :1725-1731