High-Performance Multifunctional Graphene-PLGA Fibers: Toward Biomimetic and Conducting 3D Scaffolds

被引:44
作者
Esrafilzadeh, Dorna [1 ,2 ]
Jalili, Rouhollah [1 ]
Stewart, Elise M. [1 ]
Aboutalebi, Seyed H. [3 ]
Razal, Joselito M. [1 ,4 ]
Moulton, Simon E. [1 ,5 ]
Wallace, Gordon G. [1 ]
机构
[1] Univ Wollongong, Intelligent Polymer Res Inst, ARC Ctr Excellence Electromat Sci, AIIM Facil, Innovat Campus, North Wollongong, NSW 2522, Australia
[2] Univ Wollongong, IHMRI, Wollongong, NSW 2522, Australia
[3] Inst Res Fundamental Sci IPM, Condensed Matter Natl Lab, Tehran 193955531, Iran
[4] Deakin Univ, Inst Frontier Mat, Geelong, Vic 3216, Australia
[5] Swinburne Univ Technol, Fac Sci Engn & Technol, Hawthorn, Vic 3122, Australia
基金
英国医学研究理事会; 澳大利亚研究理事会;
关键词
POLY(LACTIC ACID); OXIDE NANOSHEETS; CARBON NANOTUBE; POLYLACTIDE/GRAPHENE COMPOSITES; POLY(LACTIC-CO-GLYCOLIC ACID); ELECTRICAL-STIMULATION; MECHANICAL-PROPERTIES; POLYMER COMPOSITES; CELL ATTACHMENT; FACILE ROUTE;
D O I
10.1002/adfm.201505304
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of electrically conducting fibers based on known cytocompatible materials is of interest to those engaged in tissue regeneration using electrical stimulation. Herein, it is demonstrated that with the aid of rheological insights, optimized formulations of graphene containing spinnable poly(lactic-co-glycolic acid) (PLGA) dopes can be made possible. This helps extend the general understanding of the mechanics involved in order to deliberately translate the intrinsic superior electrical and mechanical properties of solution-processed graphene into the design process and practical fiber architectural engineering. The as-produced fibers are found to exhibit excellent electrical conductivity and electrochemical performance, good mechanical properties, and cellular affinity. At the highest loading of graphene (24.3 wt%), the conductivity of as-prepared fibers is as high as 150 S m(-1) (more than two orders of magnitude higher than the highest conductivity achieved for any type of nanocarbon-PLGA composite fibers) reported previously. Moreover, the Young's modulus and tensile strength of the base fiber are enhanced 647- and 59-folds, respectively, through addition of graphene.
引用
收藏
页码:3105 / 3117
页数:13
相关论文
共 88 条
  • [1] High-Performance Multifunctional Graphene Yarns: Toward Wearable All-Carbon Energy Storage Textiles
    Aboutalebi, Seyed Hamed
    Jalili, Rouhollah
    Esrafilzadeh, Dorna
    Salari, Maryam
    Gholamvand, Zahra
    Yamini, Sima Aminorroaya
    Konstantinov, Konstantin
    Shepherd, Roderick L.
    Chen, Jun
    Moulton, Simon E.
    Innis, Peter Charles
    Minett, Andrew I.
    Razal, Joselito M.
    Wallace, Gordon G.
    [J]. ACS NANO, 2014, 8 (03) : 2456 - 2466
  • [2] Enhanced Hydrogen Storage in Graphene Oxide-MWCNTs Composite at Room Temperature
    Aboutalebi, Seyed Hamed
    Aminorroaya-Yamini, Sima
    Nevirkovets, Ivan
    Konstantinov, Konstantin
    Liu, Hua Kun
    [J]. ADVANCED ENERGY MATERIALS, 2012, 2 (12) : 1439 - 1446
  • [3] Spontaneous Formation of Liquid Crystals in Ultralarge Graphene Oxide Dispersions
    Aboutalebi, Seyed Hamed
    Gudarzi, Mohsen Moazzami
    Zheng, Qing Bin
    Kim, Jang-Kyo
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (15) : 2978 - 2988
  • [4] Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors
    Aboutalebi, Seyed Hamed
    Chidembo, Alfred T.
    Salari, Maryam
    Konstantinov, Konstantin
    Wexler, David
    Liu, Hua Kun
    Dou, Shi Xue
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (05) : 1855 - 1865
  • [5] Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites
    Asiri, Abdullah M.
    Marwani, Hadi M.
    Khan, Sher Bahadar
    Webster, Thomas J.
    [J]. INTERNATIONAL JOURNAL OF NANOMEDICINE, 2014, 9 : 5533 - 5539
  • [6] Conductive polymers: Towards a smart biomaterial for tissue engineering
    Balint, Richard
    Cassidy, Nigel J.
    Cartmell, Sarah H.
    [J]. ACTA BIOMATERIALIA, 2014, 10 (06) : 2341 - 2353
  • [7] New Solvents for Nanotubes: Approaching the Dispersibility of Surfactants
    Bergin, Shane D.
    Sun, Zhenyu
    Streich, Philip
    Hamilton, James
    Coleman, Jonathan N.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (01) : 231 - 237
  • [8] Graphene-based liquid crystal device
    Blake, Peter
    Brimicombe, Paul D.
    Nair, Rahul R.
    Booth, Tim J.
    Jiang, Da
    Schedin, Fred
    Ponomarenko, Leonid A.
    Morozov, Sergey V.
    Gleeson, Helen F.
    Hill, Ernie W.
    Geim, Andre K.
    Novoselov, Kostya S.
    [J]. NANO LETTERS, 2008, 8 (06) : 1704 - 1708
  • [9] Methods of graphite exfoliation
    Cai, Minzhen
    Thorpe, Daniel
    Adamson, Douglas H.
    Schniepp, Hannes C.
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (48) : 24992 - 25002
  • [10] Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly(lactic acid) composites
    Cao, Yewen
    Feng, Jiachun
    Wu, Peiyi
    [J]. CARBON, 2010, 48 (13) : 3834 - 3839