Machine Learning Methods for Improving Vulnerability Detection in Low-level Code

被引:0
作者
Letychevskyi, Oleksandr [1 ]
Hryniuk, Yaroslav [1 ]
机构
[1] Glushkov Inst Cybernet, Kiev, Ukraine
来源
2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) | 2020年
关键词
symbolic modeling; graph; machine learning; node-embedding component;
D O I
10.1109/BigData50022.2020.9377753
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a machine learning (ML) approach to improving vulnerability detection in low-level code. It uses ML classification algorithms in conjunction with novel node-embedding techniques to predict the shortest path between two nodes of a control flow graph.
引用
收藏
页码:5750 / 5752
页数:3
相关论文
共 7 条
[1]   A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications [J].
Cai, HongYun ;
Zheng, Vincent W. ;
Chang, Kevin Chen-Chuan .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2018, 30 (09) :1616-1637
[2]  
Dang B., PRACTICAL REVERSE EN, P302
[3]   node2vec: Scalable Feature Learning for Networks [J].
Grover, Aditya ;
Leskovec, Jure .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :855-864
[4]  
Letychevskyi O, 2019, PROCEEDINGS OF THE 2019 10TH INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS, SERVICES AND TECHNOLOGIES (DESSERT), P70, DOI [10.1109/DESSERT.2019.8770033, 10.1109/dessert.2019.8770033]
[5]   DeepWalk: Online Learning of Social Representations [J].
Perozzi, Bryan ;
Al-Rfou, Rami ;
Skiena, Steven .
PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, :701-710
[6]   Nonlinear dimensionality reduction by locally linear embedding [J].
Roweis, ST ;
Saul, LK .
SCIENCE, 2000, 290 (5500) :2323-+
[7]  
Shaw B, 2009, P 26 ANN INT C MACH, P937, DOI DOI 10.1145/1553374.1553494