Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms

被引:364
作者
Lovley, Derek R. [1 ,2 ,3 ]
Holmes, Dawn E. [2 ,3 ,4 ]
机构
[1] Northeastern Univ, Electrobiomat Inst, Key Lab Anisotropy & Texture Mat, Minist Educ, Shenyang, Peoples R China
[2] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA
[3] Univ Massachusetts, Inst Appl Life Sci IALS, Amherst, MA 01003 USA
[4] Western New England Univ, Dept Phys & Biol Sci, Springfield, MA USA
关键词
FE(III) OXIDE REDUCTION; C-TYPE CYTOCHROMES; ANAEROBIC BENZENE OXIDATION; DISSIMILATORY FE(III); MICROBIAL REDUCTION; SHEWANELLA-ONEIDENSIS; TRANSPORT ELECTRONS; REDUCING BACTERIUM; HUMIC SUBSTANCES; CABLE BACTERIA;
D O I
10.1038/s41579-021-00597-6
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Electroactive microorganisms markedly affect many environments in which they establish outer-surface electrical contacts with other cells and minerals or reduce soluble extracellular redox-active molecules such as flavins and humic substances. A growing body of research emphasizes their broad phylogenetic diversity and shows that these microorganisms have key roles in multiple biogeochemical cycles, as well as the microbiome of the gut, anaerobic waste digesters and metal corrosion. Diverse bacteria and archaea have independently evolved cytochrome-based strategies for electron exchange between the outer cell surface and the cell interior, but cytochrome-free mechanisms are also prevalent. Electrically conductive protein filaments, soluble electron shuttles and non-biological conductive materials can substantially extend the electronic reach of microorganisms beyond the surface of the cell. The growing appreciation of the diversity of electroactive microorganisms and their unique electronic capabilities is leading to a broad range of applications. In this Review, Lovley and Holmes discuss the physiological and phylogenetic diversity of electroactive microorganisms, and their mechanisms for extracellular electron transfer in various electromicrobiomes.
引用
收藏
页码:5 / 19
页数:15
相关论文
共 189 条
[1]  
Adeney W.E., 1894, Sci. Proc. R. Dublin Soc, V8, P247
[2]   Conductivity of individual Geobacter pili [J].
Adhikari, Ramesh Y. ;
Malvankar, Nikhil S. ;
Tuominen, Mark T. ;
Lovley, Derek R. .
RSC ADVANCES, 2016, 6 (10) :8363-8366
[3]   Diverse Microorganisms in Sediment and Groundwater Are Implicated in Extracellular Redox Processes Based on Genomic Analysis of Bioanode Communities [J].
Arbour, Tyler J. ;
Gilbert, Benjamin ;
Banfield, Jillian F. .
FRONTIERS IN MICROBIOLOGY, 2020, 11
[4]  
BALASHOVA VV, 1979, MICROBIOLOGY+, V48, P635
[5]   Extracellular reduction of solid electron acceptors by Shewanella oneidensis [J].
Beblawy, Sebastian ;
Bursac, Thea ;
Paquete, Catarina ;
Louro, Ricardo ;
Clarke, Thomas A. ;
Gescher, Johannes .
MOLECULAR MICROBIOLOGY, 2018, 109 (05) :571-583
[6]   Long-distance electron transport in individual, living cable bacteria [J].
Bjerg, Jesper T. ;
Boschker, Henricus T. S. ;
Larsen, Steffen ;
Berry, David ;
Schmid, Markus ;
Millo, Diego ;
Tataru, Paula ;
Meysman, Filip J. R. ;
Wagner, Michael ;
Nielsen, Lars Peter ;
Schramm, Andreas .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (22) :5786-5791
[7]   Activated carbon stimulates microbial diversity and PAH biodegradation under anaerobic conditions in oil-polluted sediments [J].
Bonaglia, Stefano ;
Broman, Elias ;
Brindefalk, Bjorn ;
Hedlund, Erika ;
Hjorth, Tomas ;
Rolff, Carl ;
Nascimento, Francisco J. A. ;
Udekwu, Klas ;
Gunnarsson, Jonas S. .
CHEMOSPHERE, 2020, 248
[8]   Electrode-reducing microorganisms that harvest energy from marine sediments [J].
Bond, DR ;
Holmes, DE ;
Tender, LM ;
Lovley, DR .
SCIENCE, 2002, 295 (5554) :483-485
[9]   Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones [J].
Bond, DR ;
Lovley, DR .
ENVIRONMENTAL MICROBIOLOGY, 2002, 4 (02) :115-124
[10]   Electricity production by Geobacter sulfurreducens attached to electrodes [J].
Bond, DR ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (03) :1548-1555