Effects of pasture management on N2O and NO emissions from soils in the humid tropics of Costa Rica

被引:107
|
作者
Veldkamp, E [1 ]
Keller, M [1 ]
Nunez, M [1 ]
机构
[1] US Forest Serv, Int Inst Trop Foresty, USDA, Rio Piedras, PR 00928 USA
关键词
D O I
10.1029/97GB02730
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Emissions of nitrous oxide (N2O) and nitric oxide (NO) from agricultural soils in the tropics are important in the global budgets of these trace gases. We made monthly measurements of N2O and NO emissions from pastures with three different management systems on volcanic soils in northwestern Costa Rica: traditional (no N input from fertilizer or legumes), pastures with a grass-legume combination, and pastures fertilized with 300 kg N ha(-1)yr(-1). Average annual N2O emissions were 2.7 ng N cm(-2)h(-1) from the traditional pastures, 4.9 ng N cm(-2)h(-1) from the grass-legume pastures, and 25.8 ng N cm(-2)h(-1) from the fertilized pastures. Average annual NO emissions were 0.9, 1.3, and 5.3 ng N cm(-2)h(-1) from traditional, grass-legume and fertilized pastures, respectively. In a separate experiment the effects of ammonium, nitrate, and urea-based fertilizer mixtures on nitrogen oxide fluxes were compared. We measured nitrogen oxide fluxes following four different fertilization events. Nitrogen oxide fluxes were among the highest ever measured. The difference in soil water content between the fertilization events had a far greater effect on N2O and NO emissions than the effect of fertilizer composition. We conclude that the concept of "emission factors" for calculating N2O and NO emissions from different types of N fertilizer is flawed because environmental factors are more important than the type of N fertilizer. To estimate fertilizer-induced N2O emission in tropical agriculture, stratification according to soil moisture regime is more useful than stratification according to fertilizer composition.
引用
收藏
页码:71 / 79
页数:9
相关论文
共 50 条
  • [41] Effects of aggregate size, soil compaction, and bovine urine on N2O emissions from a pasture soil
    Uchida, Yoshitaka
    Clough, Tim J.
    Kelliher, Francis M.
    Sherlock, Robert R.
    SOIL BIOLOGY & BIOCHEMISTRY, 2008, 40 (04): : 924 - 931
  • [42] Mitigating N2O emissions from agricultural soils with fungivorous mites
    Shen, Haoyang
    Shiratori, Yutaka
    Ohta, Sayuri
    Masuda, Yoko
    Isobe, Kazuo
    Senoo, Keishi
    ISME JOURNAL, 2021, 15 (08): : 2427 - 2439
  • [43] N2O emissions and ammonia volatilization from leachate irrigated soils
    Shao, Li-Ming
    Qiu, Wei-Jian
    Zhang, Hou-Hu
    He, Pin-Jing
    Huanjing Kexue/Environmental Science, 2008, 29 (12): : 3520 - 3524
  • [45] Mitigating N2O emissions from agricultural soils with fungivorous mites
    Haoyang Shen
    Yutaka Shiratori
    Sayuri Ohta
    Yoko Masuda
    Kazuo Isobe
    Keishi Senoo
    The ISME Journal, 2021, 15 : 2427 - 2439
  • [46] Estimating uncertainty in N2O emissions from US cropland soils
    Del Grosso, S. J.
    Ogle, S. M.
    Parton, W. J.
    Breidt, F. J.
    GLOBAL BIOGEOCHEMICAL CYCLES, 2010, 24
  • [47] Projecting future N2O emissions from agricultural soils in Belgium
    Roelandt, Caroline
    Dendoncker, Nicolas
    Rounsevell, Mark
    Perrin, Dominique
    Van Wesemael, Bas
    GLOBAL CHANGE BIOLOGY, 2007, 13 (01) : 18 - 27
  • [48] The effect of rainfall on NO and N2O emissions from Ugandan agroforest soils
    Dick, J
    Skiba, U
    Wilson, J
    PHYTON-ANNALES REI BOTANICAE, 2001, 41 (03) : 73 - 80
  • [49] Isotopic variability of N2O emissions from tropical forest soils
    Pérez, T
    Trumbore, SE
    Tyler, SC
    Davidson, EA
    Keller, M
    de Camargo, PB
    GLOBAL BIOGEOCHEMICAL CYCLES, 2000, 14 (02) : 525 - 535
  • [50] Nitrous oxide (N2O) emissions from soils in warm climates
    Granli, T
    Bockman, OC
    FERTILIZER RESEARCH, 1995, 42 (1-3): : 159 - 163