Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrodinger Equation

被引:22
|
作者
Zhang, Hai-Qiang [1 ]
Liu, Xiao-Li [1 ]
Wen, Li-Li [1 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, POB 253, Shanghai 200093, Peoples R China
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2016年 / 71卷 / 02期
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Breather; Darboux transformation; (2+1)-Dimensional Nonlinear Schrodinger Equation; Soliton; Rogue Wave;
D O I
10.1515/zna-2015-0408
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, a (2+1)-dimensional nonlinear Schrodinger (NLS) equation, which is a generalisation of the NLS equation, is under investigation. The classical and generalised N-fold Darboux transformations are constructed in terms of determinant representations. With the non-vanishing background and iterated formula, a family of the analytical solutions of the (2+1)-dimensional NLS equation are systematically generated, including the bright-line solitons, breathers, and rogue waves. The interaction mechanisms between two bright-line solitons and among three bright-line solitons are both elastic. Several patterns for first-, second, and higher-order rogue wave solutions fixed at space are displayed, namely, the fundamental pattern, triangular pattern, and circular pattern. The two-dimensional space structures of first-, second-, and third-order rogue waves fixed at time are also demonstrated.
引用
收藏
页码:95 / 101
页数:7
相关论文
共 50 条
  • [31] Breather and rogue wave solutions of coupled derivative nonlinear Schrodinger equations
    Xiang, Xiao-Shuo
    Zuo, Da-Wei
    NONLINEAR DYNAMICS, 2022, 107 (01) : 1195 - 1204
  • [32] STUDY ON BREATHER-TYPE ROGUE WAVE BASED ON FOURTH-ORDER NONLINEAR SCHRODINGER EQUATION
    Lu, Wenyue
    Yang, Jianmin
    Lv, Haining
    Li, Xin
    33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 4B, 2014,
  • [33] Dynamics of D'Alembert wave and soliton molecule for a (2+1)-dimensional generalized breaking soliton equation
    Ren, Bo
    Chu, Peng-Cheng
    CHINESE JOURNAL OF PHYSICS, 2021, 74 : 296 - 301
  • [34] General rogue wave solution to the discrete nonlinear Schrodinger equation
    Ohta, Yasuhiro
    Feng, Bao-Feng
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 439
  • [35] W-shaped soliton, breather and rogue wave solutions on the elliptic function background in a fifth-order nonlinear Schrödinger equation
    Fan, Fang-Cheng
    Xie, Wei-Kang
    WAVE MOTION, 2024, 129
  • [36] Characteristics of Rogue Waves on a Soliton Background in the General Coupled Nonlinear Schrodinger Equation
    Wang, Xiu-Bin
    Han, Bo
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2019, 71 (02) : 152 - 160
  • [37] Localized Properties of Rogue Wave for a Higher-Order Nonlinear Schrodinger Equation
    Liu Wei
    Qiu De-Qin
    He Jing-Song
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2015, 63 (05) : 525 - 534
  • [38] Soliton, breather, rogue wave and continuum limit for the spatial discrete Hirota equation by Darboux-Backlund transformation
    Fan, Fang-Cheng
    Xu, Zhi-Guo
    Shi, Shao-Yun
    NONLINEAR DYNAMICS, 2023, 111 (11) : 10393 - 10405
  • [39] New soliton solutions for the (2+1)-dimensional Schrodinger-Maxwell-Bloch equation
    Zhou, Run
    Hao, Hui-Qin
    Jia, Rong-Rong
    SUPERLATTICES AND MICROSTRUCTURES, 2018, 113 : 409 - 418
  • [40] Soliton, breather, rogue wave and continuum limit for the spatial discrete Hirota equation by Darboux–Bäcklund transformation
    Fang-Cheng Fan
    Zhi-Guo Xu
    Shao-Yun Shi
    Nonlinear Dynamics, 2023, 111 : 10393 - 10405