Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrodinger Equation

被引:22
作者
Zhang, Hai-Qiang [1 ]
Liu, Xiao-Li [1 ]
Wen, Li-Li [1 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, POB 253, Shanghai 200093, Peoples R China
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2016年 / 71卷 / 02期
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Breather; Darboux transformation; (2+1)-Dimensional Nonlinear Schrodinger Equation; Soliton; Rogue Wave;
D O I
10.1515/zna-2015-0408
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, a (2+1)-dimensional nonlinear Schrodinger (NLS) equation, which is a generalisation of the NLS equation, is under investigation. The classical and generalised N-fold Darboux transformations are constructed in terms of determinant representations. With the non-vanishing background and iterated formula, a family of the analytical solutions of the (2+1)-dimensional NLS equation are systematically generated, including the bright-line solitons, breathers, and rogue waves. The interaction mechanisms between two bright-line solitons and among three bright-line solitons are both elastic. Several patterns for first-, second, and higher-order rogue wave solutions fixed at space are displayed, namely, the fundamental pattern, triangular pattern, and circular pattern. The two-dimensional space structures of first-, second-, and third-order rogue waves fixed at time are also demonstrated.
引用
收藏
页码:95 / 101
页数:7
相关论文
共 20 条
[1]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[2]   Waves that appear from nowhere and disappear without a trace [J].
Akhmediev, N. ;
Ankiewicz, A. ;
Taki, M. .
PHYSICS LETTERS A, 2009, 373 (06) :675-678
[3]   Observation of a hierarchy of up to fifth-order rogue waves in a water tank [J].
Chabchoub, A. ;
Hoffmann, N. ;
Onorato, M. ;
Slunyaev, A. ;
Sergeeva, A. ;
Pelinovsky, E. ;
Akhmediev, N. .
PHYSICAL REVIEW E, 2012, 86 (05)
[4]   High-Order Solutions and Generalized Darboux Transformations of Derivative Nonlinear Schrodinger Equations [J].
Guo, Boling ;
Ling, Liming ;
Liu, Q. P. .
STUDIES IN APPLIED MATHEMATICS, 2013, 130 (04) :317-344
[5]   Nonlinear Schrodinger equation: Generalized Darboux transformation and rogue wave solutions [J].
Guo, Boling ;
Ling, Liming ;
Liu, Q. P. .
PHYSICAL REVIEW E, 2012, 85 (02)
[6]   Coherently coupled solitons, breathers and rogue waves for polarized optical waves in an isotropic medium [J].
Guo, Rui ;
Liu, Yue-Feng ;
Hao, Hui-Qin ;
Qi, Feng-Hua .
NONLINEAR DYNAMICS, 2015, 80 (03) :1221-1230
[7]   Dynamic behaviors of the breather solutions for the AB system in fluid mechanics [J].
Guo, Rui ;
Hao, Hui-Qin ;
Zhang, Ling-Ling .
NONLINEAR DYNAMICS, 2013, 74 (03) :701-709
[8]   Classifying the hierarchy of nonlinear-Schrodinger-equation rogue-wave solutions [J].
Kedziora, David J. ;
Ankiewicz, Adrian ;
Akhmediev, Nail .
PHYSICAL REVIEW E, 2013, 88 (01)
[9]   Circular rogue wave clusters [J].
Kedziora, David J. ;
Ankiewicz, Adrian ;
Akhmediev, Nail .
PHYSICAL REVIEW E, 2011, 84 (05)
[10]   Physical mechanisms of the rogue wave phenomenon [J].
Kharif, C ;
Pelinovsky, E .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2003, 22 (06) :603-634