Strain-induced, off-diagonal, same-atom parameters in empirical tight-binding theory suitable for [110] uniaxial strain applied to a silicon parametrization

被引:36
作者
Boykin, Timothy B. [1 ]
Luisier, Mathieu [2 ]
Salmani-Jelodar, Mehdi [2 ]
Klimeck, Gerhard [2 ]
机构
[1] Univ Alabama, Dept Elect & Comp Engn, Huntsville, AL 35899 USA
[2] Purdue Univ, Sch Elect & Comp Engn, Birk Nanotechnol Ctr, Network Computat Nanotechnol, W Lafayette, IN 47907 USA
关键词
INITIO MOLECULAR-DYNAMICS; DEFORMATION POTENTIALS; ELECTRONIC-STRUCTURE; TRANSITION; SIMULATION; MODEL;
D O I
10.1103/PhysRevB.81.125202
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
State-of-the-art transistors achieve their improved performance through strain engineering. The somewhat unusual uniaxial [110] strain is of particular importance as it provides a significant mobility increase for electrons. Empirical tight binding has shown tremendous benefits in modeling realistically large structures including standard strain conditions, but often fails to predict the correct uniaxial [110] strain behavior because most treatments neglect the same-atom different-orbital matrix elements induced by this strain. Two separate mechanisms are responsible for these conditions: Loumlwdin orbital changes and displacement of nearest-neighbor potentials. We present a model which separately includes both mechanisms via parameters whose range of validity can be independently determined. Using this method we optimize a set of strain parameters for Si. The combination of both effects is able to reproduce the Si X-z-valley transverse mass splitting under uniaxial [110] strain. We then use this model to calculate the drain current of a strained double-gate, ultrathin-body metal-oxide-semiconductor field-effect transistor, finding experimentally plausible results.
引用
收藏
页数:9
相关论文
共 32 条
[11]  
Harrison W. A., 1999, Elementary Electronic Structure
[12]   Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters [J].
Jancu, JM ;
Scholz, R ;
Beltram, F ;
Bassani, F .
PHYSICAL REVIEW B, 1998, 57 (11) :6493-6507
[13]   Valley splitting in strained silicon quantum wells modeled with 2° miscuts, step disorder, and alloy disorder [J].
Kharche, Neerav ;
Prada, Marta ;
Boykin, Timothy B. ;
Klimek, Gerhard .
APPLIED PHYSICS LETTERS, 2007, 90 (09)
[14]   DEFORMATION POTENTIALS IN SILICON .1. UNIAXIAL STRAIN [J].
KLEINMAN, L .
PHYSICAL REVIEW, 1962, 128 (06) :2614-+
[15]   sp3s* tight-binding parameters for transport simulations in compound semiconductors [J].
Klimeck, G ;
Bowen, RC ;
Boykin, TB ;
Cwik, TA .
SUPERLATTICES AND MICROSTRUCTURES, 2000, 27 (5-6) :519-524
[16]   Si tight-binding parameters from genetic algorithm fitting [J].
Klimeck, G ;
Bowen, RC ;
Boykin, TB ;
Salazar-Lazaro, C ;
Cwik, TA ;
Stoica, A .
SUPERLATTICES AND MICROSTRUCTURES, 2000, 27 (2-3) :77-88
[17]   AB-INITIO MOLECULAR-DYNAMICS SIMULATION OF THE LIQUID-METAL AMORPHOUS-SEMICONDUCTOR TRANSITION IN GERMANIUM [J].
KRESSE, G ;
HAFNER, J .
PHYSICAL REVIEW B, 1994, 49 (20) :14251-14269
[18]   ABINITIO MOLECULAR-DYNAMICS FOR LIQUID-METALS [J].
KRESSE, G ;
HAFNER, J .
PHYSICAL REVIEW B, 1993, 47 (01) :558-561
[19]   Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET [J].
Lansbergen, G. P. ;
Rahman, R. ;
Wellard, C. J. ;
Woo, I. ;
Caro, J. ;
Collaert, N. ;
Biesemans, S. ;
Klimeck, G. ;
Hollenberg, L. C. L. ;
Rogge, S. .
NATURE PHYSICS, 2008, 4 (08) :656-661