High strength measurement of monolayer graphene oxide

被引:143
作者
Cao, Changhong [1 ]
Daly, Matthew [2 ]
Singh, Chandra Veer [2 ]
Sun, Yu [1 ]
Filleter, Tobin [1 ]
机构
[1] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada
[2] Univ Toronto, Dept Mat Sci & Engn, Toronto, ON M5S 3E4, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
MECHANICAL-PROPERTIES; ELASTIC PROPERTIES; GRAIN-BOUNDARIES; GRAPHITE OXIDE; NANOCOMPOSITES; SHEETS;
D O I
10.1016/j.carbon.2014.09.082
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, the strength of monolayer graphene oxide membranes was experimentally characterized. The monolayer GO membranes were found to have a high carbon-to-oxygen ratio (similar to 4:1) and an average strength of 17.3 N/m (24.7 GPa). This measured strength is orders of magnitude higher than previously reported values for graphene oxide paper and is approximately 50% of the 2D intrinsic strength of pristine graphene. In order to corroborate strength measurements, experimental values were compared to theoretical first-principles calculations. Using a supercell constructed from experimental measurements of monolayer graphene oxide chemistry and functional structure, density functional theory calculations predicted a theoretical strength of 21.9 N/m (31.3 GPa) under equibiaxial tension, in good agreement with the experimental data. Furthermore, computational simulations were used to understand the underlying fracture mechanism, in which bond cleavage occurred along a path connecting oxygenated carbon atoms in the basal plane. This work shows that monolayer graphene oxide possesses near-theoretical strength reaching tens of GPa. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:497 / 504
页数:8
相关论文
共 38 条
[1]  
[Anonymous], 2010, J APPL PHYS
[2]  
Brodie B.C., 1859, Phil. Trans. R. Soc. Lond. A, V149, P249
[3]  
Cao C., J MAT RES
[4]   Graphene Oxide-MnO2 Nanocomposites for Supercapacitors [J].
Chen, Sheng ;
Zhu, Junwu ;
Wu, Xiaodong ;
Han, Qiaofeng ;
Wang, Xin .
ACS NANO, 2010, 4 (05) :2822-2830
[5]   A kinematic study of energy barriers for crack formation in graphene tilt boundaries [J].
Daly, Matthew ;
Singh, Chandra Veer .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (22)
[6]   Elastic fields and moduli in defected graphene [J].
Dettori, Riccardo ;
Cadelano, Emiliano ;
Colombo, Luciano .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (10)
[7]   Preparation and characterization of graphene oxide paper [J].
Dikin, Dmitriy A. ;
Stankovich, Sasha ;
Zimney, Eric J. ;
Piner, Richard D. ;
Dommett, Geoffrey H. B. ;
Evmenenko, Guennadi ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2007, 448 (7152) :457-460
[8]   Synthesis and characterization of polyurethane/montmorillonite nanocomposites by in situ polymerization [J].
Ding, QJ ;
Liu, BL ;
Zhang, Q ;
He, QH ;
Hu, BX ;
Shen, J .
POLYMER INTERNATIONAL, 2006, 55 (05) :500-504
[9]   Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics [J].
Eda, Goki ;
Chhowalla, Manish .
ADVANCED MATERIALS, 2010, 22 (22) :2392-2415
[10]   QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J].
Giannozzi, Paolo ;
Baroni, Stefano ;
Bonini, Nicola ;
Calandra, Matteo ;
Car, Roberto ;
Cavazzoni, Carlo ;
Ceresoli, Davide ;
Chiarotti, Guido L. ;
Cococcioni, Matteo ;
Dabo, Ismaila ;
Dal Corso, Andrea ;
de Gironcoli, Stefano ;
Fabris, Stefano ;
Fratesi, Guido ;
Gebauer, Ralph ;
Gerstmann, Uwe ;
Gougoussis, Christos ;
Kokalj, Anton ;
Lazzeri, Michele ;
Martin-Samos, Layla ;
Marzari, Nicola ;
Mauri, Francesco ;
Mazzarello, Riccardo ;
Paolini, Stefano ;
Pasquarello, Alfredo ;
Paulatto, Lorenzo ;
Sbraccia, Carlo ;
Scandolo, Sandro ;
Sclauzero, Gabriele ;
Seitsonen, Ari P. ;
Smogunov, Alexander ;
Umari, Paolo ;
Wentzcovitch, Renata M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)