Maximal operators for the holomorphic Ornstein-Uhlenbeck semigroup

被引:27
作者
García-Cuerva, J
Mauceri, G
Meda, S
Sjögren, P
Torrea, JL
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[2] Dipartimento Matemat, I-16146 Genoa, Italy
[3] Univ Milan, Dipartimento Matemat, I-20126 Milan, Italy
[4] Chalmers Univ Technol, Dept Math, S-41296 Gothenburg, Sweden
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2003年 / 67卷
关键词
D O I
10.1112/S0024610702003733
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each p in [1, infinity) let E-p denote the-closure of the region of holomorphy of the Ornstein-Uhlenbeck semigroup {H-t : t > 0} on LP with respect to the Gaussian measure. Sharp weak type and strong type estimates are proved for the maximal operator f --> H-p(*) f = sup{\H(z)f\ : z is an element of E-p} and for a class of related operators. As a consequence, a new and simpler proof of the weak type 1 estimate is given for the maximal operator associated to the Mehler kernel.
引用
收藏
页码:219 / 234
页数:16
相关论文
共 9 条
  • [1] Carleson L., 1979, LECT NOTES MATH, V779, P5
  • [3] Spectral multipliers for the Ornstein-Uhlenbeck semigroup
    García-Cuerva, J
    Mauceri, G
    Sjögren, P
    Torrea, JL
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1999, 78 (1): : 281 - 305
  • [4] Functional calculus for the Ornstein-Uhlenbeck operator
    García-Cuerva, J
    Mauceri, G
    Meda, S
    Sjögren, P
    Torrea, JL
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 183 (02) : 413 - 450
  • [5] Garsia A. M, 1970, LECT ADV MATH, V4
  • [6] The Mehler maximal function:: A geometric proof of the weak type 1
    Menárguez, T
    Pérez, S
    Soria, F
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 : 846 - 856
  • [7] POISSON INTEGRALS FOR HERMITE AND LAGUERRE EXPANSIONS
    MUCKENHOUPT, B
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 139 (MAY) : 231 - +
  • [8] SJOGREN P, 1983, LECT NOTES MATH, V992, P73
  • [9] Stein E., 1970, TOPICS HARMONIC ANAL