Oscillation in a posteriori error estimation

被引:9
作者
Kreuzer, Christian [1 ]
Veeser, Andreas [2 ]
机构
[1] Tech Univ Dortmund, Fak Math, Vogelpothsweg 87, D-44227 Dortmund, Germany
[2] Univ Milan, Dipartimento Matemat, Via C Saldini 50, I-20133 Milan, Italy
关键词
65N15; 65N30; 65N12; 65N50; 41A05; 41A63; ELLIPTIC PROBLEMS; CONVERGENCE;
D O I
10.1007/s00211-021-01194-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a posteriori error analysis, the relationship between error and estimator is usually spoiled by so-called oscillation terms, which cannot be bounded by the error. In order to remedy, we devise a new approach where the oscillation has the following two properties. First, it is dominated by the error, irrespective of mesh fineness and the regularity of data and the exact solution. Second, it captures in terms of data the part of the residual that, in general, cannot be quantified with finite information. The new twist in our approach is a locally stable projection onto discretized residuals.
引用
收藏
页码:43 / 78
页数:36
相关论文
共 26 条
[1]  
Ainsworth M., 2000, PURE APPL MATH NEW Y
[2]   A framework for obtaining guaranteed error bounds for finite element approximations [J].
Ainsworth, Mark .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (09) :2618-2632
[3]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[4]   A FEEDBACK FINITE-ELEMENT METHOD WITH A POSTERIORI ERROR ESTIMATION .1. THE FINITE-ELEMENT METHOD AND SOME BASIC PROPERTIES OF THE A POSTERIORI ERROR ESTIMATOR [J].
BABUSKA, I ;
MILLER, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1987, 61 (01) :1-40
[5]   Localization of the W-1,q norm for local a posteriori efficiency [J].
Blechta, Jan ;
Malek, Josef ;
Vohralik, Martin .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (02) :914-950
[6]   A posteriori error estimates for elliptic problems in two and three space dimensions [J].
Bornemann, FA ;
Erdmann, B ;
Kornhuber, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (03) :1188-1204
[7]  
Braess D, 2008, MATH COMPUT, V77, P651, DOI 10.1090/S0025-5718-07-02080-7
[8]   Equilibrated residual error estimates are p-robust [J].
Braess, Dietrich ;
Pillwein, Veronika ;
Schoeberl, Joachim .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (13-14) :1189-1197
[9]   On p-robust saturation for hp-AFEM [J].
Canuto, Claudio ;
Nochetto, Ricardo H. ;
Stevenson, Rob ;
Verani, Marco .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (09) :2004-2022
[10]   Convergence Rates of AFEM with H-1 Data [J].
Cohen, Albert ;
DeVore, Ronald ;
Nochetto, Ricardo H. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2012, 12 (05) :671-718