A nonlinear model of the behavior of simple cells in visual cortex

被引:2
作者
García-Pérez, MA [1 ]
机构
[1] Univ Complutense, Dept Metodol, Fac Psicol, Charlotte, NC 28223 USA
关键词
visual cortex; simple cell; receptive field; temporal impulse response; nonlinearity;
D O I
10.1023/B:JCNS.0000044874.24421.48
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite their structured receptive fields (RFs) and the strong linear components in their responses, most simple cells in mammalian visual cortex exhibit nonlinear behaviors. Besides the contrast-response function, nonlinearities are evident in various types of failure at superposition tasks, in the disagreement between direction indices computed from drifting and counterphase flickering gratings, in various forms of response suppression (including end- and side-stopping, spatial-frequency-specific inhibition and cross-orientation inhibition), in the advance of phase with increasing contrast, and in phase-insensitive and frequency-doubled responses to counterphase flickering gratings. These behaviors suggest that nonlinearities are involved in the operation of simple cells, but current models fail to explain them. A quantitative model is presented here that purports to describe basic and common principles of operation for all visual cortical cells. Simple cells are described as receiving afferents from multiple subunits that differ in their individual RFs and temporal impulse responses (TIRs). Subunits are independent and perform a spatial integration across their RFs followed by halfwave rectification and temporal convolution with their TIRs. This parallel operation yields a set of temporal functions representing each subunit's contribution to the membrane potential of the host cell, whose final form is given by the weighted sum of all subunits' contributions. By varying the number of subunits and their particular characteristics, different instances of the model are obtained each of which displays a different set of behaviors. Extensive simulation results are presented that illustrate how all of the reported nonlinear behaviors of simple cells arise from these multi-subunit organizations.
引用
收藏
页码:289 / 325
页数:37
相关论文
共 130 条
[1]   An intracellular study of the contrast-dependence of neuronal activity in cat visual cortex [J].
Ahmed, B ;
Allison, JD ;
Douglas, RJ ;
Martin, KAC .
CEREBRAL CORTEX, 1997, 7 (06) :559-570
[2]   VISUAL-CORTEX NEURONS IN MONKEY AND CAT - EFFECT OF CONTRAST ON THE SPATIAL AND TEMPORAL PHASE-TRANSFER FUNCTIONS [J].
ALBRECHT, DG .
VISUAL NEUROSCIENCE, 1995, 12 (06) :1191-1210
[3]   STRIATE CORTEX OF MONKEY AND CAT - CONTRAST RESPONSE FUNCTION [J].
ALBRECHT, DG ;
HAMILTON, DB .
JOURNAL OF NEUROPHYSIOLOGY, 1982, 48 (01) :217-237
[4]   MOTION SELECTIVITY AND THE CONTRAST-RESPONSE FUNCTION OF SIMPLE CELLS IN THE VISUAL-CORTEX [J].
ALBRECHT, DG ;
GEISLER, WS .
VISUAL NEUROSCIENCE, 1991, 7 (06) :531-546
[5]   STRIATE CORTEX RESPONSES TO PERIODIC PATTERNS WITH AND WITHOUT THE FUNDAMENTAL HARMONICS [J].
ALBRECHT, DG ;
DEVALOIS, RL .
JOURNAL OF PHYSIOLOGY-LONDON, 1981, 319 (OCT) :497-514
[6]   Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex [J].
Anderson, JS ;
Carandini, M ;
Ferster, D .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 84 (02) :909-926
[7]  
[Anonymous], 1991, COMPUT MODEL VIS PRO
[8]   INHIBITORY REFINEMENT OF SPATIAL-FREQUENCY SELECTIVITY IN SINGLE CELLS OF THE CAT STRIATE CORTEX [J].
BAUMAN, LA ;
BONDS, AB .
VISION RESEARCH, 1991, 31 (06) :933-944
[9]   PREDICTION OF FLICKER SENSITIVITIES FROM TEMPORAL 3-PULSE DATA [J].
BERGEN, JR ;
WILSON, HR .
VISION RESEARCH, 1985, 25 (04) :577-582
[10]   MECHANISMS OF INHIBITION IN CAT VISUAL-CORTEX [J].
BERMAN, NJ ;
DOUGLAS, RJ ;
MARTIN, KAC ;
WHITTERIDGE, D .
JOURNAL OF PHYSIOLOGY-LONDON, 1991, 440 :697-722