Quantum circuit architecture search for variational quantum algorithms

被引:99
作者
Du, Yuxuan [1 ,2 ]
Huang, Tao [2 ,3 ]
You, Shan [3 ]
Hsieh, Min-Hsiu [4 ,5 ]
Tao, Dacheng [1 ,2 ]
机构
[1] JD Explore Acad, Beijing 101111, Peoples R China
[2] Univ Sydney, Fac Engn, Sch Comp Sci, Sydney, NSW 2008, Australia
[3] SenseTime Res, Beijing 100080, Peoples R China
[4] Hon Hai Quantum Comp Res Ctr, Taipei 114, Taiwan
[5] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Software & Informat, Sydney, NSW 2007, Australia
关键词
D O I
10.1038/s41534-022-00570-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Variational quantum algorithms (VQAs) are expected to be a path to quantum advantages on noisy intermediate-scale quantum devices. However, both empirical and theoretical results exhibit that the deployed ansatz heavily affects the performance of VQAs such that an ansatz with a larger number of quantum gates enables a stronger expressivity, while the accumulated noise may render a poor trainability. To maximally improve the robustness and trainability of VQAs, here we devise a resource and runtime efficient scheme termed quantum architecture search (QAS). In particular, given a learning task, QAS automatically seeks a near-optimal ansatz (i.e., circuit architecture) to balance benefits and side-effects brought by adding more noisy quantum gates to achieve a good performance. We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks. In the problems studied, numerical and experimental results show that QAS cannot only alleviate the influence of quantum noise and barren plateaus but also outperforms VQAs with pre-selected ansatze.
引用
收藏
页数:8
相关论文
共 59 条
[1]  
[Anonymous], 2019, Open Source Guides
[2]  
[Anonymous], 2018, PREPRINT
[3]   Training deep quantum neural networks [J].
Beer, Kerstin ;
Bondarenko, Dmytro ;
Farrelly, Terry ;
Osborne, Tobias J. ;
Salzmann, Robert ;
Scheiermann, Daniel ;
Wolf, Ramona .
NATURE COMMUNICATIONS, 2020, 11 (01)
[4]   Parameterized quantum circuits as machine learning models [J].
Benedetti, Marcello ;
Lloyd, Erika ;
Sack, Stefan ;
Fiorentini, Mattia .
QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (04)
[5]  
Bergholm V, 2018, PREPRINT
[6]   Noisy intermediate-scale quantum algorithms [J].
Bharti, Kishor ;
Cervera-Lierta, Alba ;
Kyaw, Thi Ha ;
Haug, Tobias ;
Alperin-Lea, Sumner ;
Anand, Abhinav ;
Degroote, Matthias ;
Heimonen, Hermanni ;
Kottmann, Jakob S. ;
Menke, Tim ;
Mok, Wai-Keong ;
Sim, Sukin ;
Kwek, Leong-Chuan ;
Aspuru-Guzik, Alan .
REVIEWS OF MODERN PHYSICS, 2022, 94 (01)
[7]   Training Variational Quantum Algorithms Is NP-Hard [J].
Bittel, Lennart ;
Kliesch, Martin .
PHYSICAL REVIEW LETTERS, 2021, 127 (12)
[8]   Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems [J].
Bubeck, Sebastien ;
Cesa-Bianchi, Nicolo .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2012, 5 (01) :1-122
[9]  
Caro M. C, 2021, PREPRINT
[10]   Variational quantum algorithms [J].
Cerezo, M. ;
Arrasmith, Andrew ;
Babbush, Ryan ;
Benjamin, Simon C. ;
Endo, Suguru ;
Fujii, Keisuke ;
McClean, Jarrod R. ;
Mitarai, Kosuke ;
Yuan, Xiao ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE REVIEWS PHYSICS, 2021, 3 (09) :625-644