Quantum circuit architecture search for variational quantum algorithms

被引:76
作者
Du, Yuxuan [1 ,2 ]
Huang, Tao [2 ,3 ]
You, Shan [3 ]
Hsieh, Min-Hsiu [4 ,5 ]
Tao, Dacheng [1 ,2 ]
机构
[1] JD Explore Acad, Beijing 101111, Peoples R China
[2] Univ Sydney, Fac Engn, Sch Comp Sci, Sydney, NSW 2008, Australia
[3] SenseTime Res, Beijing 100080, Peoples R China
[4] Hon Hai Quantum Comp Res Ctr, Taipei 114, Taiwan
[5] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Software & Informat, Sydney, NSW 2007, Australia
关键词
D O I
10.1038/s41534-022-00570-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Variational quantum algorithms (VQAs) are expected to be a path to quantum advantages on noisy intermediate-scale quantum devices. However, both empirical and theoretical results exhibit that the deployed ansatz heavily affects the performance of VQAs such that an ansatz with a larger number of quantum gates enables a stronger expressivity, while the accumulated noise may render a poor trainability. To maximally improve the robustness and trainability of VQAs, here we devise a resource and runtime efficient scheme termed quantum architecture search (QAS). In particular, given a learning task, QAS automatically seeks a near-optimal ansatz (i.e., circuit architecture) to balance benefits and side-effects brought by adding more noisy quantum gates to achieve a good performance. We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks. In the problems studied, numerical and experimental results show that QAS cannot only alleviate the influence of quantum noise and barren plateaus but also outperforms VQAs with pre-selected ansatze.
引用
收藏
页数:8
相关论文
共 59 条
  • [1] [Anonymous], 2019, QISKIT OPEN SOURCE F
  • [2] Training deep quantum neural networks
    Beer, Kerstin
    Bondarenko, Dmytro
    Farrelly, Terry
    Osborne, Tobias J.
    Salzmann, Robert
    Scheiermann, Daniel
    Wolf, Ramona
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [3] Parameterized quantum circuits as machine learning models
    Benedetti, Marcello
    Lloyd, Erika
    Sack, Stefan
    Fiorentini, Mattia
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (04)
  • [4] Bergholm V., 2018, PREPRINT
  • [5] Noisy intermediate-scale quantum algorithms
    Bharti, Kishor
    Cervera-Lierta, Alba
    Kyaw, Thi Ha
    Haug, Tobias
    Alperin-Lea, Sumner
    Anand, Abhinav
    Degroote, Matthias
    Heimonen, Hermanni
    Kottmann, Jakob S.
    Menke, Tim
    Mok, Wai-Keong
    Sim, Sukin
    Kwek, Leong-Chuan
    Aspuru-Guzik, Alan
    [J]. REVIEWS OF MODERN PHYSICS, 2022, 94 (01)
  • [6] Training Variational Quantum Algorithms Is NP-Hard
    Bittel, Lennart
    Kliesch, Martin
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (12)
  • [7] Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems
    Bubeck, Sebastien
    Cesa-Bianchi, Nicolo
    [J]. FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2012, 5 (01): : 1 - 122
  • [8] Caro M. C, 2021, PREPRINT
  • [9] Variational quantum algorithms
    Cerezo, M.
    Arrasmith, Andrew
    Babbush, Ryan
    Benjamin, Simon C.
    Endo, Suguru
    Fujii, Keisuke
    McClean, Jarrod R.
    Mitarai, Kosuke
    Yuan, Xiao
    Cincio, Lukasz
    Coles, Patrick J.
    [J]. NATURE REVIEWS PHYSICS, 2021, 3 (09) : 625 - 644
  • [10] Cost function dependent barren plateaus in shallow parametrized quantum circuits
    Cerezo, M.
    Sone, Akira
    Volkoff, Tyler
    Cincio, Lukasz
    Coles, Patrick J.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)