Vacuum-Free, Maskless Patterning of Ni Electrodes by Laser Reductive Sintering of NiO Nanoparticle Ink and Its Application to Transparent Conductors

被引:122
作者
Lee, Daeho [2 ]
Paeng, Dongwoo [1 ]
Park, Hee K. [3 ]
Grigoropoulos, Costas P. [1 ]
机构
[1] Univ Calif Berkeley, Dept Mech Engn, Laser Thermal Lab, Berkeley, CA 94720 USA
[2] Gachon Univ, Dept Mech Engn, Songnam 461701, Gyeonggi Do, South Korea
[3] Laser Prismat LLC, San Jose, CA 95129 USA
基金
美国国家科学基金会;
关键词
selective laser reductive sintering; Ni electrode; solution-processable route; NiO nanoparticle ink; touch screen panel; flexible substrate; NICKEL NANOPARTICLES; FABRICATION; DEPOSITION; LIGHT; NONVACUUM; FILM;
D O I
10.1021/nn503383z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We introduce a method for direct patterning of Ni electrodes through selective laser direct writing (LDW) of NiO nanoparticle (NP) ink. High-resolution Ni patterns are generated from NiO NP thin films by a vacuum-free, lithography-free, and solution-processable route. In particular, a continuous wave laser is used for the LDW reductive sintering of the metal oxide under ambient conditions with the aid of reducing agents in the ink solvent. Thin (similar to 40 nm) Ni electrodes of glossy metallic surfaces with smooth morphology and excellent edge definition can be fabricated. By applying this method, we demonstrate a high transmittance (>87%), electrically conducting panel for a touch screen panel application. The resistivity of the Ni electrode is less than an order of magnitude higher compared to that of the bulk Ni. Mechanical bending test, tape-pull test, and ultrasonic bath test confirm the robust adhesion of the electrodes on glass and polymer substrates.
引用
收藏
页码:9807 / 9814
页数:8
相关论文
共 33 条
[1]   Surface morphological, microstructural, and electrochromic properties of short-range ordered and crystalline nickel oxide thin films [J].
Ahn, KS ;
Nah, YC ;
Sung, YE .
APPLIED SURFACE SCIENCE, 2002, 199 (1-4) :259-269
[2]   Atomic layer deposition of nickel by the reduction of preformed nickel oxide [J].
Chae, J ;
Park, HS ;
Kang, SW .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (06) :C64-C66
[3]   In-tandem deposition and sintering of printed gold nanoparticle inks induced by continuous Gaussian laser irradiation [J].
Chung, J ;
Bieri, NR ;
Ko, S ;
Grigoropoulos, CP ;
Poulikakos, D .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2004, 79 (4-6) :1259-1261
[4]   Conductor microstructures by laser curing of printed gold nanoparticle ink [J].
Chung, JW ;
Ko, SW ;
Bieri, NR ;
Grigoropoulos, CP ;
Poulikakos, D .
APPLIED PHYSICS LETTERS, 2004, 84 (05) :801-803
[5]   Nonvacuum, Maskless Fabrication of a Flexible Metal Grid Transparent Conductor by Low-Temperature Selective Laser Sintering of Nanoparticle Ink [J].
Hong, Sukjoon ;
Yeo, Junyeob ;
Kim, Gunho ;
Kim, Dongkyu ;
Lee, Habeom ;
Kwon, Jinhyeong ;
Lee, Hyungman ;
Lee, Phillip ;
Ko, Seung Hwan .
ACS NANO, 2013, 7 (06) :5024-5031
[6]   Laser-Assisted Simultaneous Transfer and Patterning of Vertically Aligned Carbon Nanotube Arrays on Polymer Substrates for Flexible Devices [J].
In, Jung Bin ;
Lee, Daeho ;
Fornasiero, Francesco ;
Noy, Aleksandr ;
Grigoropoulos, Costas P. .
ACS NANO, 2012, 6 (09) :7858-7866
[7]  
Incropera F.P., 2011, FUNDAMENTALS HEAT MA
[8]   Laser sintering of Cu paste film printed on polyimide substrate [J].
Joo, Myungo ;
Lee, Byoungyoon ;
Jeong, Sooncheol ;
Lee, Myeongkyu .
APPLIED SURFACE SCIENCE, 2011, 258 (01) :521-524
[9]   One-Step Fabrication of Copper Electrode by Laser-Induced Direct Local Reduction and Agglomeration of Copper Oxide Nanoparticle [J].
Kang, Bongchul ;
Han, Seungyong ;
Kim, Jongsu ;
Ko, Seunghwan ;
Yang, Minyang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (48) :23664-23670
[10]   Intense pulsed light sintering of copper nanoink for printed electronics [J].
Kim, Hak-Sung ;
Dhage, Sanjay R. ;
Shim, Dong-Eun ;
Hahn, H. Thomas .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2009, 97 (04) :791-798