Gap-Plasmon-Enhanced Nanofocusing Near-Field Microscopy

被引:66
作者
Becker, Simon F. [1 ,2 ]
Esmann, Martin [1 ,2 ]
Yoo, KyungWan [1 ,2 ,3 ]
Gross, Petra [1 ,2 ]
Vogelgesang, Ralf [1 ,2 ]
Park, NamKyoo [3 ]
Lienau, Christoph [1 ,2 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Inst Phys, D-26111 Oldenburg, Germany
[2] Carl von Ossietzky Univ Oldenburg, Ctr Interface Sci, D-26111 Oldenburg, Germany
[3] Seoul Natl Univ, Sch EECS, Photon Syst Lab, Seoul 151744, South Korea
关键词
nanofocusing; near-field microscopy; gap plasmon; nanospectroscopy; OPTICAL MICROSCOPY; RAMAN-SPECTROSCOPY; SURFACE-PLASMONS; TUNNEL-JUNCTIONS; SINGLE-MOLECULE; LIGHT-SOURCE; GOLD TAPERS; TIP; SCATTERING; RESOLUTION;
D O I
10.1021/acsphotonics.5b00438
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report the observation of coherent light scattering from nanometer-sized gap regions in a nanofocusing scanning near-field optical microscope. When approaching a nanofocusing gold taper to the surface of a thin semitransparent gold film and detecting in transmission, we find a steep increase in scattering intensity over the last 5 nm in a near-field signal selected in k-space. This is confirmed as a signature of highly confined gap plasmons by detailed comparisons to finite element method simulations. The simulations reveal that the confinement is adjustable via the underlying probe sample distance control scheme even to levels well below the taper apex radius. This controlled experimental realization of gap plasmons and the extraction of their signature in a scanning probe microscope pave the way toward broadband spectroscopy at and below single-nanometer length scales, using parallel detection at multiple wavelengths, for instance, in transient absorption or two-dimensional spectroscopy.
引用
收藏
页码:223 / 232
页数:10
相关论文
共 56 条
[1]  
[Anonymous], 1986, Optics
[2]   THE EFFECTS OF THE INTERACTION BETWEEN RESONANCES IN THE ELECTROMAGNETIC RESPONSE OF A SPHERE-PLANE STRUCTURE - APPLICATIONS TO SURFACE ENHANCED SPECTROSCOPY [J].
ARAVIND, PK ;
METIU, H .
SURFACE SCIENCE, 1983, 124 (2-3) :506-528
[3]   Plasmonic Hybridization between Nanowires and a Metallic Surface: A Transformation Optics Approach [J].
Aubry, Alexandre ;
Lei, Dang Yuan ;
Maier, Stefan A. ;
Pendry, John B. .
ACS NANO, 2011, 5 (04) :3293-3308
[4]   Superfocusing of surface polaritons in the conical structure [J].
Babadjanyan, AJ ;
Margaryan, NL ;
Nerkararyan, KV .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (08) :3785-3788
[5]   Light on the Tip of a Needle: Plasmonic Nanofocusing for Spectroscopy on the Nanoscale [J].
Berweger, Samuel ;
Atkin, Joanna M. ;
Olmon, Robert L. ;
Raschke, Markus B. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (07) :945-952
[6]  
Bottomley LA, 1998, ANAL CHEM, V70, p425R
[7]   Simulations of atomic resolution tip-enhanced optical microscopy [J].
Downes, Andrew ;
Salter, Donald ;
Elfick, Alistair .
OPTICS EXPRESS, 2006, 14 (23) :11324-11329
[8]   k-space imaging of the eigenmodes of sharp gold tapers for scanning near-field optical microscopy [J].
Esmann, Martin ;
Becker, Simon F. ;
da Cunha, Bernard B. ;
Brauer, Jens H. ;
Vogelgesang, Ralf ;
Gross, Petra ;
Lienau, Christoph .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2013, 4 :603-610
[9]   Tip-substrate interaction in optical near-field microscopy [J].
Esteban, R. ;
Vogelgesang, R. ;
Kern, K. .
PHYSICAL REVIEW B, 2007, 75 (19)
[10]   Simulation of optical near and far fields of dielectric apertureless scanning probes [J].
Esteban, R ;
Vogelgesang, R ;
Kern, K .
NANOTECHNOLOGY, 2006, 17 (02) :475-482