Topological entropy and adding machine maps

被引:0
作者
Block, L [1 ]
Keesling, J [1 ]
机构
[1] Univ Florida, Dept Math, Gainesville, FL 32611 USA
来源
HOUSTON JOURNAL OF MATHEMATICS | 2004年 / 30卷 / 04期
关键词
adding machine; topological entropy; interval;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove two theorems which extend known results concerning periodic orbits and topological entropy in one-dimensional dynamics. One of these results concerns the adding machine map (also called the odometer map) f(alpha) defined on the alpha-adic adding machine Delta(alpha). We let H(f(alpha)) denote the greatest lower bound of the topological entropies of F, taken over all continuous maps F of the interval which contain a copy of f(alpha). We prove that if alpha is a sequence of primes such that 2 appears in the sequence exactly k times, then H(f(alpha)) = log 2/2(k+1).
引用
收藏
页码:1103 / 1113
页数:11
相关论文
共 14 条
[1]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[2]  
Alseda L., 1993, Combinatorial Dynamics and Entropy in Dimension One
[3]  
BELL H, 1995, J DYN DIFFER EQU, V7, P409, DOI DOI 10.1007/BF02219369
[5]  
BLOCK LS, 1992, LECT NOTES MATH, V1513, pUR3
[6]  
BLOCK LS, IN PRESS TOPOLOGY IT
[7]  
Blokh A.M., 1995, DYN REPORT, P1
[8]   LIAPUNOV STABILITY AND ADDING MACHINES [J].
BUESCU, J ;
STEWART, I .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1995, 15 :271-290
[9]  
Delahaye J.-P., 1980, C R ACAD SCI PARIS A, V291, pA323
[10]  
DEMELO W, 1993, 1 DIMENSIONAL DYNAMI