A conjecture on the maximum cut and bisection width in random regular graphs

被引:29
作者
Zdeborova, Lenka [1 ,2 ]
Boettcher, Stefan [3 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Emory Univ, Dept Phys, Atlanta, GA 30322 USA
基金
美国国家科学基金会;
关键词
cavity and replica method; spin glasses (theory); random graphs; networks; MEAN-FIELD THEORY; SPIN-GLASSES; EXTREMAL OPTIMIZATION; BETHE LATTICE; BOUNDS; MODEL;
D O I
10.1088/1742-5468/2010/02/P02020
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The asymptotic properties of random regular graphs are objects of extensive study in mathematics and physics. In this paper we argue, using the theory of spin glasses in physics, that in random regular graphs the maximum cut size asymptotically equals the number of edges in the graph minus the minimum bisection size. Maximum cut and minimal bisection are two famous NP-complete problems with no known general relation between them; hence our conjecture is a surprising property for random regular graphs. We further support the conjecture with numerical simulations. A rigorous proof of this relation is an obvious challenge.
引用
收藏
页数:13
相关论文
共 38 条
[21]  
Hendrickson B, 1995, SUPERCOMP PROC, P626
[22]   GRAPH OPTIMIZATION PROBLEMS AND THE POTTS GLASS [J].
KANTER, I ;
SOMPOLINSKY, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (11) :L673-L679
[23]  
Kostochka A., 1992, 4 CZECH S COMB GRAPH, P151
[24]   The cavity method at zero temperature [J].
Mézard, M ;
Parisi, G .
JOURNAL OF STATISTICAL PHYSICS, 2003, 111 (1-2) :1-34
[25]   The Bethe lattice spin glass revisited [J].
Mézard, M ;
Parisi, G .
EUROPEAN PHYSICAL JOURNAL B, 2001, 20 (02) :217-233
[26]   MEAN-FIELD THEORY OF RANDOMLY FRUSTRATED SYSTEMS WITH FINITE CONNECTIVITY [J].
MEZARD, M ;
PARISI, G .
EUROPHYSICS LETTERS, 1987, 3 (10) :1067-1074
[27]  
Mezard M., 1987, World Scientific Lecture Notes in Physics, V9
[28]  
MONIEN B, 2001, P 26 INT S MATH FDN, P524
[29]  
MONTANARI A, 2009, COMMUNICATION
[30]   ORDER PARAMETER FOR SPIN-GLASSES - FUNCTION ON THE INTERVAL 0-1 [J].
PARISI, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (03) :1101-1112