Existence and uniqueness of mild solutions for a class of nonlinear fractional evolution equation

被引:3
作者
Wang, Fang [1 ]
Wang, Ping [2 ]
机构
[1] Changsha Univ Sci & Technol, Sch Math & Comp Sci, Changsha 410076, Hunan, Peoples R China
[2] Huaqiao Univ, Xiamen Inst Technol, Xiamen 361021, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2014年
关键词
fractional derivative; evolution equation; Riemann-Liouville integral; existence; uniqueness;
D O I
10.1186/1687-1847-2014-150
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss a class of fractional evolution equations with the Riemann-Liouville fractional derivative and obtain the existence and uniqueness of mild solutions by using some classical fixed point theorem. Then we give some examples to demonstrate the main results.
引用
收藏
页数:11
相关论文
共 22 条
  • [1] On Type of Periodicity and Ergodicity to a Class of Fractional Order Differential Equations
    Agarwal, Ravi P.
    de Andrade, Bruno
    Cuevas, Claudio
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [2] [Anonymous], 2000, Applications of Fractional Calculus in Physics
  • [3] [Anonymous], 1993, INTRO FRACTIONAL CA
  • [4] [Anonymous], 1980, FIXED POINT THEOREMS
  • [5] Almost automorphic mild solutions to fractional differential equations
    Araya, Daniela
    Lizama, Carlos
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (11) : 3692 - 3705
  • [6] Existence of Periodic Solution for a Nonlinear Fractional Differential Equation
    Belmekki, Mohammed
    Nieto, Juan J.
    Rodriguez-Lopez, Rosana
    [J]. BOUNDARY VALUE PROBLEMS, 2009,
  • [7] LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2
    CAPUTO, M
    [J]. GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05): : 529 - &
  • [8] Existence and uniqueness for a nonlinear fractional differential equation
    Delbosco, D
    Rodino, L
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 204 (02) : 609 - 625
  • [9] Diethelm K., 1999, On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity, P217
  • [10] Some probability densities and fundamental solutions of fractional evolution equations
    El-Borai, MM
    [J]. CHAOS SOLITONS & FRACTALS, 2002, 14 (03) : 433 - 440