Two nontrivial solutions of boundary-value problems for semilinear Δ γ -differential equations

被引:15
作者
Luyen, D. T. [1 ]
机构
[1] Hoa Lu Univ, Dept Math, Ninh Nhat Ninh Binh City, Vietnam
关键词
Semilinear degenerate elliptic equations; critical points; two solutions; multiple solutions; HEISENBERG-GROUP; EXISTENCE;
D O I
10.1134/S0001434617050078
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the existence of multiple solutions for the boundary-value problem Delta(gamma)u + f(x,u) = 0 in Omega, u = 0 on partial derivative Omega where Omega is a bounded domain with smooth boundary in R-N (N >= 2) and Delta(gamma) is the subelliptic operator of the type Delta gamma u = Sigma xj (gamma j2xju), xju=u/xj; gamma =(gamma 1,gamma 2,...,gamma N). We use the three critical point theorem.
引用
收藏
页码:815 / 823
页数:9
相关论文
共 22 条
[2]  
Ambrosetti A., 1979, Nonlinear Anal, V3, P635, DOI [10.1016/0362-546X(79)90092-0, DOI 10.1016/0362-546X(79)90092-0]
[3]   Liouville-type theorems for elliptic inequalities involving the Δλ-Laplace operator [J].
Cung The Anh ;
Bui Kim My .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (07) :1002-1013
[4]   Existence of solutions to Δλ-Laplace equations without the Ambrosetti-Rabinowitz condition [J].
Cung The Anh ;
Bui Kim My .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (01) :137-150
[5]   Global attractor of the Cauchy problem for a semilinear degenerate damped hyperbolic equation involving the Grushin operator [J].
Duong Trong Luyen ;
Nguyen Minh Tri .
ANNALES POLONICI MATHEMATICI, 2016, 117 (02) :141-161
[6]   EXISTENCE AND NONEXISTENCE RESULTS FOR SEMILINEAR EQUATIONS ON THE HEISENBERG-GROUP [J].
GAROFALO, N ;
LANCONELLI, E .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1992, 41 (01) :71-98
[7]  
Grusin V. V., 1970, Mat. Sb. (N.S.), V83, P456
[8]   MULTIPLE NONTRIVIAL SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS [J].
HIRANO, N .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (02) :468-472
[9]  
JERISON D, 1987, J DIFFER GEOM, V25, P167
[10]   THE DIRICHLET PROBLEM FOR THE KOHN-LAPLACIAN ON THE HEISENBERG-GROUP .2. [J].
JERISON, DS .
JOURNAL OF FUNCTIONAL ANALYSIS, 1981, 43 (02) :224-257