Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures

被引:518
作者
Zhang, Kenan [1 ]
Zhang, Tianning [1 ]
Cheng, Guanghui [5 ]
Li, Tianxin [1 ]
Wang, Shuxia [1 ]
Wei, Wei [1 ]
Zhou, Xiaohao [1 ]
Yu, Weiwei [1 ]
Sun, Yan [1 ]
Wang, Peng [1 ]
Zhang, Dong [2 ]
Zeng, Changgan [5 ,6 ]
Wang, Xingjun [1 ]
Hu, Weida [1 ]
Fan, Hong Jin [3 ]
Shen, Guozhen [2 ]
Chen, Xin [1 ]
Duan, Xiangfeng [4 ]
Chang, Kai [2 ,7 ]
Dai, Ning [1 ,7 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared Phys, Shanghai 200083, Peoples R China
[2] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China
[3] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
[4] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[5] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale HFNL, Hefei 230026, Anhui, Peoples R China
[6] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China
[7] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
关键词
van der Waals heterostructure; MoS2; MoTe2; interlayer transition; type-II band alignment; PHOTOCURRENT GENERATION; METAL DICHALCOGENIDES; RAMAN-SCATTERING; CHARGE-TRANSFER; MONOLAYER; TRANSISTORS; GRAPHENE; GROWTH; HETEROJUNCTIONS; EXCITONS;
D O I
10.1021/acsnano.6b00980
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We demonstrate the type -II staggered band alignment in MoTe2/MoS2 van der Waals (vdW) heterostructures and an interlayer optical transition at similar to 1.55 The photoinduced charge separation between the MoTe2/MoS2 vdW heterostructure is verified by Kelvin probe force microscopy (KPFM) under illumination, density function theory (DFT) simulations and photoluminescence (PL) spectroscopy. Photoelectrical measurements of MoTe2/MoS2 vdW heterostructures show a distinct photocurrent response in the infrared regime (1550 nm). The creation of type -II vdW heterostructures with strong interlayer coupling could improve our fundamental understanding of the essential physics behind vdW heterostructures and help the design of next-generation infrared optoelectronics.
引用
收藏
页码:3852 / 3858
页数:7
相关论文
共 47 条
[1]  
Bhattacharya P., 1994, SEMICONDUCTOR OPTOEL
[2]   Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films [J].
Britnell, L. ;
Ribeiro, R. M. ;
Eckmann, A. ;
Jalil, R. ;
Belle, B. D. ;
Mishchenko, A. ;
Kim, Y. -J. ;
Gorbachev, R. V. ;
Georgiou, T. ;
Morozov, S. V. ;
Grigorenko, A. N. ;
Geim, A. K. ;
Casiraghi, C. ;
Castro Neto, A. H. ;
Novoselov, K. S. .
SCIENCE, 2013, 340 (6138) :1311-1314
[3]   Environmental Changes in MoTe2 Excitonic Dynamics by Defects-Activated Molecular Interaction [J].
Chen, Bin ;
Sahin, Hasan ;
Suslu, Aslihan ;
Ding, Laura ;
Bertoni, Mariana I. ;
Peeters, F. M. ;
Tongay, Sefaattin .
ACS NANO, 2015, 9 (05) :5326-5332
[4]   Electronic Properties of MoS2-WS2 Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy [J].
Chen, Kun ;
Wan, Xi ;
Wen, Jinxiu ;
Xie, Weiguang ;
Kang, Zhiwen ;
Zeng, Xiaoliang ;
Chen, Huanjun ;
Xu, Jian-Bin .
ACS NANO, 2015, 9 (10) :9868-9876
[5]   Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p-n Diodes [J].
Cheng, Rui ;
Li, Dehui ;
Zhou, Hailong ;
Wang, Chen ;
Yin, Anxiang ;
Jiang, Shan ;
Liu, Yuan ;
Chen, Yu ;
Huang, Yu ;
Duan, Xiangfeng .
NANO LETTERS, 2014, 14 (10) :5590-5597
[6]   Spectroscopic Signatures for Interlayer Coupling in MoS2-WSe2 van der Waals Stacking [J].
Chiu, Ming-Hui ;
Li, Ming-Yang ;
Zhang, Wengjing ;
Hsu, Wei-Ting ;
Chang, Wen-Hao ;
Terrones, Mauricio ;
Terrones, Humberto ;
Li, Lain-Jong .
ACS NANO, 2014, 8 (09) :9649-9656
[7]   Phase patterning for ohmic homojunction contact in MoTe2 [J].
Cho, Suyeon ;
Kim, Sera ;
Kim, Jung Ho ;
Zhao, Jiong ;
Seok, Jinbong ;
Keum, Dong Hoon ;
Baik, Jaeyoon ;
Choe, Duk-Hyun ;
Chang, K. J. ;
Suenaga, Kazu ;
Kim, Sung Wng ;
Lee, Young Hee ;
Yang, Heejun .
SCIENCE, 2015, 349 (6248) :625-628
[8]  
Cui X, 2015, NAT NANOTECHNOL, V10, P534, DOI [10.1038/nnano.2015.70, 10.1038/NNANO.2015.70]
[9]  
Dean CR, 2011, NAT PHYS, V7, P693, DOI [10.1038/NPHYS2007, 10.1038/nphys2007]
[10]  
Duan XD, 2014, NAT NANOTECHNOL, V9, P1024, DOI [10.1038/NNANO.2014.222, 10.1038/nnano.2014.222]