Direct Particle Tracking Observation and Brownian Dynamics Simulations of a Single Nanoparticle Optically Trapped by a Plasmonic Nanoaperture

被引:77
作者
Xu, Zhe [1 ]
Song, Wuzhou [1 ,2 ]
Crozier, Kenneth B. [1 ,3 ]
机构
[1] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China
[3] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
optical trapping; particle tracking; double nanohole; fluorescence microscopy; Brownian motion; NEAR-FIELD; METAL NANOPARTICLES; MANIPULATION; TWEEZERS; FORCES; RESONATORS; GRADIENT;
D O I
10.1021/acsphotonics.8b00176
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Optical trapping using plasmonic nanoapertures has proven to be an effective means for the contactless manipulation of nanometer-sized particles under low optical intensities. These particles have included polystyrene and silica nanospheres, proteins, coated quantum dots and magnetic nanoparticles. Here we employ fluorescence microscopy to directly observe the optical trapping process, tracking the position of a polystyrene nanosphere (20 nm diameter) trapped in water by a double nanohole (DNH) aperture in a gold film. We show that position distribution in the plane of the film has an elliptical shape. Comprehensive simulations are performed to gain insight into the trapping process, including of the distributions of the electric field, temperature, fluid velocity, optical force, and potential energy. These simulations are combined with stochastic Brownian diffusion to directly model the dynamics of the trapping process, that is, particle trajectories. We anticipate that the combination of direct particle tracking experiments with Brownian motion simulations will be valuable tool for the better understanding of fundamental mechanisms underlying nanostructure-based trapping. It could thus be helpful in the development of the future novel optical trapping devices.
引用
收藏
页码:2850 / 2859
页数:19
相关论文
共 52 条
[1]   Label-free free-solution nanoaperture optical tweezers for single molecule protein studies [J].
Al Balushi, Ahmed A. ;
Kotnala, Abhay ;
Wheaton, Skyler ;
Gelfand, Ryan M. ;
Rajashekara, Yashaswini ;
Gordon, Reuven .
ANALYST, 2015, 140 (14) :4760-4778
[2]   OBSERVATION OF A SINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRIC PARTICLES [J].
ASHKIN, A ;
DZIEDZIC, JM ;
BJORKHOLM, JE ;
CHU, S .
OPTICS LETTERS, 1986, 11 (05) :288-290
[3]   OPTICAL TRAPPING AND MANIPULATION OF SINGLE CELLS USING INFRARED-LASER BEAMS [J].
ASHKIN, A ;
DZIEDZIC, JM ;
YAMANE, T .
NATURE, 1987, 330 (6150) :769-771
[4]   ACCELERATION AND TRAPPING OF PARTICLES BY RADIATION PRESSURE [J].
ASHKIN, A .
PHYSICAL REVIEW LETTERS, 1970, 24 (04) :156-&
[5]   Photoinduced Heating of Nanoparticle Arrays [J].
Baffou, Guillaume ;
Berto, Pascal ;
Urena, Esteban Bermudez ;
Quidant, Romain ;
Monneret, Serge ;
Polleux, Julien ;
Rigneault, Herve .
ACS NANO, 2013, 7 (08) :6478-6488
[6]   Thermo-plasmonics: using metallic nanostructures as nano-sources of heat [J].
Baffou, Guillaume ;
Quidant, Romain .
LASER & PHOTONICS REVIEWS, 2013, 7 (02) :171-187
[7]   Nanoscale Control of Optical Heating in Complex Plasmonic Systems [J].
Baffou, Guillaume ;
Quidant, Romain ;
Javier Garcia de Abajo, F. .
ACS NANO, 2010, 4 (02) :709-716
[8]  
Berthelot J, 2014, NAT NANOTECHNOL, V9, P295, DOI [10.1038/nnano.2014.24, 10.1038/NNANO.2014.24]
[9]   Theory and practice of simulation of optical tweezers [J].
Bui, Ann A. M. ;
Stilgoe, Alexander B. ;
Lenton, Isaac C. D. ;
Gibson, Lachlan J. ;
Kashchuk, Anatolii V. ;
Zhang, Shu ;
Rubinsztein-Dunlop, Halina ;
Nieminen, Timo A. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 195 :66-75
[10]   Enhanced Optical Trapping and Arrangement of Nano-Objects in a Plasmonic Nanocavity [J].
Chen, Chang ;
Juan, Mathieu L. ;
Li, Yi ;
Maes, Guido ;
Borghs, Gustaaf ;
Van Dorpe, Pol ;
Quidant, Romain .
NANO LETTERS, 2012, 12 (01) :125-132