Exponential Synchronization of Dynamical Network with Distributed Delays Via Intermittent Control

被引:7
作者
He, Sulan [1 ]
Yi, Guisheng [1 ]
Wu, Zhaoyan [1 ]
机构
[1] Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Synchronization; dynamical network; distributed delays; intermittent control; COMPLEX NETWORKS; CLUSTER SYNCHRONIZATION; MULTIAGENT SYSTEMS; NEURAL-NETWORKS; CONSENSUS; CRITERIA; STATE;
D O I
10.1002/asjc.1833
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the exponential synchronization of dynamical network with distributed time delays is investigated. The intermittent controllers are designed to achieve the exponential synchronization. Based on the Lyapunov function method and the mathematical analysis technique, some synchronization criteria with respect to the system parameters, control gain and control rate are presented. From the criteria, for any given dynamical network, the needed values of control gains and rate can be easily estimated. Finally, two numerical simulations are performed to verify the derived theoretical results.
引用
收藏
页码:2378 / 2386
页数:9
相关论文
共 50 条
[21]   Synchronization of delayed dynamical networks with multi-links via intermittent pinning control [J].
Mwanandiye, Eric S. ;
Wu, Bo ;
Jia, Qiang .
NEURAL COMPUTING & APPLICATIONS, 2020, 32 (15) :11277-11284
[22]   Adaptive exponential lag synchronization for neural networks with mixed delays via intermittent control [J].
Peipei Zhou ;
Shuiming Cai .
Advances in Difference Equations, 2018
[23]   Cluster Synchronization for Linearly Coupled Nonidentical Systems With Delays via Aperiodically Intermittent Pinning Control [J].
Liu, Xiwei ;
Li, Shaohua .
IEEE ACCESS, 2017, 5 :4179-4189
[24]   Function Projective Synchronization of Complex Networks With Distributed Delays via Hybrid Feedback Control [J].
Qiu, Xiuliang ;
Lin, Wenshui ;
Zheng, Yiming .
IEEE ACCESS, 2020, 8 :99110-99114
[25]   Cluster synchronization in community network with nonidentical nodes via intermittent pinning control [J].
Gan Lu-Yi-Ning ;
Wu Zhao-Yan ;
Gong Xiao-Li .
CHINESE PHYSICS B, 2015, 24 (04)
[26]   Synchronization of fractional-order complex dynamical networks via periodically intermittent pinning control [J].
Li, Hong-Li ;
Hu, Cheng ;
Jiang, Haijun ;
Teng, Zhidong ;
Jiang, Yao-Lin .
CHAOS SOLITONS & FRACTALS, 2017, 103 :357-363
[27]   Synchronization of a complex dynamical network with coupling time-varying delays via sampled-data control [J].
Lee, Tae H. ;
Wu, Zheng-Guang ;
Park, Ju H. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (03) :1354-1366
[28]   Synchronization of Complex Dynamical Networks with Two Delay Couplings via Intermittent Control [J].
Qi, Xiaolong ;
Wang, Huiling ;
Zhao, He ;
Liang, Yi .
PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY AND MANAGEMENT SCIENCE (ITMS 2015), 2015, 34 :772-777
[29]   Pinning Exponential Synchronization of Nonlinearly Coupled Neural Networks with Mixed Delays via Intermittent Control [J].
Jian-An Wang ;
Xin-Yu Wen .
International Journal of Control, Automation and Systems, 2018, 16 :1558-1568
[30]   Further on Synchronization of Dynamical Networks via Adaptive Intermittent Control [J].
Zhu, Shuaibing ;
Zhou, Jin ;
Lu, Jinhu ;
Lu, Jun-An .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (10) :7216-7222