Application of machine learning and artificial intelligence to extend EFIT equilibrium reconstruction

被引:43
作者
Lao, L. L. [1 ]
Kruger, S. [2 ]
Akcay, C. [1 ]
Balaprakash, P. [3 ]
Bechtel, T. A. [1 ,4 ]
Howell, E. [2 ]
Koo, J. [3 ]
Leddy, J. [2 ]
Leinhauser, M. [5 ]
Liu, Y. Q. [1 ]
Madireddy, S. [3 ]
McClenaghan, J. [1 ]
Orozco, D. [1 ]
Pankin, A. [6 ]
Schissel, D. [6 ]
Smith, S. [1 ]
Sun, X. [1 ,4 ]
Williams, S. [7 ]
机构
[1] Gen Atom, San Diego, CA 92121 USA
[2] TechX, Boulder, CO USA
[3] Argonne Natl Lab, Lemont, IL USA
[4] Oak Ridge Associated Univ, Oak Ridge, TN USA
[5] Univ Delaware, Newark, DE USA
[6] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[7] Lawrence Berkeley Natl Lab, Berkeley, CA USA
关键词
tokamak equilibrium reconstruction; machine learning; artificial intelligence; Gaussian process; model order reduction; neural network; 3D perturbed equilibrium; REVERSED MAGNETIC SHEAR; ENHANCED CONFINEMENT; MHD EQUILIBRIUM; TOKAMAK; DISCHARGES; STABILITY; PLASMAS; MODES;
D O I
10.1088/1361-6587/ac6fff
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recent progress in the application of machine learning (ML)/artificial intelligence (AI) algorithms to improve the Equilibrium Fitting (EFIT) code equilibrium reconstruction for fusion data analysis applications is presented. A device-independent portable core equilibrium solver capable of computing or reconstructing equilibrium for different tokamaks has been created to facilitate adaptation of ML/AI algorithms. A large EFIT database comprising of DIII-D magnetic, motional Stark effect, and kinetic reconstruction data has been generated for developments of EFIT model-order-reduction (MOR) surrogate models to reconstruct approximate equilibrium solutions. A neural-network MOR surrogate model has been successfully trained and tested using the magnetically reconstructed datasets with encouraging results. Other progress includes developments of a Gaussian process Bayesian framework that can adapt its many hyperparameters to improve processing of experimental input data and a 3D perturbed equilibrium database from toroidal full magnetohydrodynamic linear response modeling using the Magnetohydrodynamic Resistive Spectrum - Feedback (MARS-F) code for developments of 3D-MOR surrogate models.
引用
收藏
页数:16
相关论文
共 61 条
[1]  
Appel L C., 2006, 33 EPS C PLASM PHYS, pp2.184
[2]   Equilibrium reconstruction in the START tokamak [J].
Appel, LC ;
Bevir, MK ;
Walsh, MJ .
NUCLEAR FUSION, 2001, 41 (02) :169-180
[3]   Kinetic equilibrium reconstructions of plasmas in the MAST database and preparation for reconstruction of the first plasmas in MAST upgrade [J].
Berkery, J. W. ;
Sabbagh, S. A. ;
Kogan, L. ;
Ryan, D. ;
Bialek, J. M. ;
Jiang, Y. ;
Battaglia, D. J. ;
Gibson, S. ;
Ham, C. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (05)
[4]   Prediction of electron density and pressure profile shapes on NSTX-U using neural networks [J].
Boyer, M. D. ;
Chadwick, J. .
NUCLEAR FUSION, 2021, 61 (04)
[5]   Improved profile fitting and quantification of uncertainty in experimental measurements of impurity transport coefficients using Gaussian process regression [J].
Chilenski, M. A. ;
Greenwald, M. ;
Marzouk, Y. ;
Howard, N. T. ;
White, A. E. ;
Rice, J. E. ;
Walk, J. R. .
NUCLEAR FUSION, 2015, 55 (02)
[6]   Deep learning based surrogate models for first-principles global simulations of fusion plasmas [J].
Dong, G. ;
Wei, X. ;
Bao, J. ;
Brochard, G. ;
Lin, Z. ;
Tang, W. .
NUCLEAR FUSION, 2021, 61 (12)
[7]   Deep Learning for Plasma Tomography and Disruption Prediction From Bolometer Data [J].
Ferreira, Diogo R. ;
Carvalho, Pedro J. ;
Fernandes, Horacio .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2020, 48 (01) :36-45
[8]   Real time equilibrium reconstruction for tokamak discharge control [J].
Ferron, JR ;
Walker, ML ;
Lag, LL ;
St John, HE ;
Humphreys, DA ;
Leuer, JA .
NUCLEAR FUSION, 1998, 38 (07) :1055-1066
[9]   MDSplus yesterday, today and tomorrow [J].
Fredian, T. ;
Stillerman, J. ;
Manduchi, G. ;
Rigoni, A. ;
Erickson, K. ;
Schroeder, T. .
FUSION ENGINEERING AND DESIGN, 2018, 127 :106-110
[10]  
Grad H., 1958, J. Nucl. Energy, V31, P190, DOI DOI 10.1016/0891-3919(58)90139-6