QUALITATIVE PROPERTIES OF SOLUTIONS TO SOME HARDY AND HENON TYPE PROBLEMS INVOLVING THE FRACTIONAL p-LAPLACIAN

被引:0
作者
Cai, Miaomiao [1 ]
Li, Fengquan [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
基金
美国国家科学基金会;
关键词
The fractional p-Laplacian; method of moving planes; symmetry; monotonicity; nonexistence; MOVING PLANES; MAXIMUM-PRINCIPLES; POSITIVE SOLUTIONS; EXTENSION PROBLEM; ELLIPTIC PROBLEM; RADIAL SYMMETRY; EQUATIONS; UNIQUENESS; THEOREM; BOUNDS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study qualitative properties of solutions to Hardy type problems and Henon type problems involving the fractional p-Laplacian. Symmetry and monotonicity results are proved. In particular, as p = 2, by a comparison with the first eigenfunction associated with the fractional Laplacian, we obtain a nonexistence result for a Henon type problem on unbounded domain.
引用
收藏
页码:855 / 870
页数:16
相关论文
共 39 条
[1]  
Abatangelo N., 2019, SPRINGER INDAM SER, V33, P1
[2]  
[Anonymous], 2016, LECT NOTES UNIONE MA
[3]   On the moving plane method for nonlocal problems in bounded domains [J].
Barrios, Begona ;
Montoro, Luigi ;
Sciunzi, Berardino .
JOURNAL D ANALYSE MATHEMATIQUE, 2018, 135 (01) :37-57
[4]   A priori bounds and existence of solutions for some nonlocal elliptic problems [J].
Barrios, Begona ;
Del Pezzo, Leandro ;
Garcia-Melian, Jorge ;
Quaas, Alexander .
REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (01) :195-220
[5]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71
[6]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[7]   Regularity Theory for Fully Nonlinear Integro-Differential Equations [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (05) :597-638
[8]  
Caffarelli LA, 2010, ANN MATH, V171, P1903
[9]   MOVING PLANES FOR NONLINEAR FRACTIONAL LAPLACIAN EQUATION WITH NEGATIVE POWERS [J].
Cai, Miaomiao ;
Ma, Li .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (09) :4603-4615
[10]   FRACTIONAL EQUATIONS WITH INDEFINITE NONLINEARITIES [J].
Chen, Wenxiong ;
Li, Congming ;
Zhu, Juiyi .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (03) :1257-1268