QUALITATIVE PROPERTIES OF SOLUTIONS TO SOME HARDY AND HENON TYPE PROBLEMS INVOLVING THE FRACTIONAL p-LAPLACIAN

被引:0
作者
Cai, Miaomiao [1 ]
Li, Fengquan [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
基金
美国国家科学基金会;
关键词
The fractional p-Laplacian; method of moving planes; symmetry; monotonicity; nonexistence; MOVING PLANES; MAXIMUM-PRINCIPLES; POSITIVE SOLUTIONS; EXTENSION PROBLEM; ELLIPTIC PROBLEM; RADIAL SYMMETRY; EQUATIONS; UNIQUENESS; THEOREM; BOUNDS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study qualitative properties of solutions to Hardy type problems and Henon type problems involving the fractional p-Laplacian. Symmetry and monotonicity results are proved. In particular, as p = 2, by a comparison with the first eigenfunction associated with the fractional Laplacian, we obtain a nonexistence result for a Henon type problem on unbounded domain.
引用
收藏
页码:855 / 870
页数:16
相关论文
共 39 条
  • [1] ABATANGELO N., 2019, Contemporary Research in Elliptic PDEs and Related Topics, P1, DOI DOI 10.1007/978-3-030-18921-1_1
  • [2] [Anonymous], 2016, LECT NOTES UNIONE MA
  • [3] On the moving plane method for nonlocal problems in bounded domains
    Barrios, Begona
    Montoro, Luigi
    Sciunzi, Berardino
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2018, 135 (01): : 37 - 57
  • [4] A priori bounds and existence of solutions for some nonlocal elliptic problems
    Barrios, Begona
    Del Pezzo, Leandro
    Garcia-Melian, Jorge
    Quaas, Alexander
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (01) : 195 - 220
  • [5] A concave-convex elliptic problem involving the fractional Laplacian
    Braendle, C.
    Colorado, E.
    de Pablo, A.
    Sanchez, U.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) : 39 - 71
  • [6] An extension problem related to the fractional Laplacian
    Caffarelli, Luis
    Silvestre, Luis
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) : 1245 - 1260
  • [7] Regularity Theory for Fully Nonlinear Integro-Differential Equations
    Caffarelli, Luis
    Silvestre, Luis
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (05) : 597 - 638
  • [8] Caffarelli LA, 2010, ANN MATH, V171, P1903
  • [9] MOVING PLANES FOR NONLINEAR FRACTIONAL LAPLACIAN EQUATION WITH NEGATIVE POWERS
    Cai, Miaomiao
    Ma, Li
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (09) : 4603 - 4615
  • [10] FRACTIONAL EQUATIONS WITH INDEFINITE NONLINEARITIES
    Chen, Wenxiong
    Li, Congming
    Zhu, Juiyi
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (03) : 1257 - 1268