Scattering theory in relation to quantum computing

被引:3
作者
Myers, John M. [1 ]
Wu, Tai Tsun [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Phys, 60 Oxford St, Cambridge, MA 02138 USA
来源
QUANTUM INFORMATION AND COMPUTATION V | 2007年 / 6573卷
关键词
quantum computing; quantum mechanics; scattering; admissible wave functions; decoherence; error correction;
D O I
10.1117/12.721693
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Much of the theory of quantum computing assumes the capacity to apply a chosen sequence of unitary trans-formations to the state of a quantum register (sometimes called a memory). It is widely recognized that this '' application of a unitary transformation '' requires an external influence. Here we relate the physics of external influences to the well established framework of quantum-mechanical scattering problems, in order to show how scattering is conceptually necessary to quantum computers, even in the idealization of zero temperature and no imperfections. For a single-qubit quantum register, infinitely slow limiting cases are shown in which scattering indeed results in a unitary transformation of the register. Implications for '' transformation-induced decoherence '' are developed and related to questions of errors and error correction.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Quantum computing with quantum-Hall edge state interferometry [J].
Bordone, Paolo ;
Bellentani, Laura ;
Bertoni, Andrea .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2019, 34 (10)
[22]   Quantum Computing: Fundamentals, Implementations and Applications [J].
Bhat, Hilal Ahmad ;
Khanday, Farooq Ahmad ;
Kaushik, Brajesh Kumar ;
Bashir, Faisal ;
Shah, Khurshed Ahmad .
IEEE OPEN JOURNAL OF NANOTECHNOLOGY, 2022, 3 :61-77
[23]   Quantum Computing: An Introduction for Microwave Engineers [J].
Bardin, Joseph C. ;
Sank, Daniel ;
Naaman, Ofer ;
Jeffrey, Evan .
IEEE MICROWAVE MAGAZINE, 2020, 21 (08) :24-44
[24]   Gravitationally invariant subspaces in quantum computing [J].
Crowder, Tanner ;
Lanzagorta, Marco .
NATURAL COMPUTING, 2023,
[25]   Evaluation of Decoherence for Quantum Control and Computing [J].
Fedorov, Arkady ;
Fedichkin, Leonid ;
Privman, Vladimir .
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2004, 1 (02) :132-143
[26]   Quantum Computing: Circuits, Algorithms, and Applications [J].
Shafique, Muhammad Ali ;
Munir, Arslan ;
Latif, Imran .
IEEE ACCESS, 2024, 12 :22296-22314
[27]   Quantum Computing Based Inference of GRNs [J].
Khan, Abhinandan ;
Saha, Goutam ;
Pal, Rajat Kumar .
BIOINFORMATICS AND BIOMEDICAL ENGINEERING, IWBBIO 2017, PT II, 2017, 10209 :221-233
[29]   QUANTUM COMPUTING POTENTIALS FOR DRUG DISCOVERY [J].
Kandula, Sai Krishna ;
Katam, Nagaveni ;
Kangari, Pranav Reddy ;
Hijmal, Adithya ;
Gurrala, Rakesh ;
Mahmoud, Mohammed .
2023 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE, CSCI 2023, 2023, :1467-1473
[30]   Quantum computing with acceptor spins in silicon [J].
Salfi, Joe ;
Tong, Mengyang ;
Rogge, Sven ;
Culcer, Dimitrie .
NANOTECHNOLOGY, 2016, 27 (24)