Sequentially optimized projections in x-ray imaging *

被引:8
作者
Burger, M. [1 ]
Hauptmann, A. [2 ,3 ]
Helin, T. [4 ]
Hyvonen, N. [5 ]
Puska, J. P. [5 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[2] Univ Oulu, Res Unit Math Sci, POB 8000, FI-90014 Oulu, Finland
[3] UCL, Dept Comp Sci, London WC1E 6BT, England
[4] LUT Univ, Sch Engn Sci, POB 20, FI-53851 Lappeenranta, Finland
[5] Aalto Univ, Dept Math & Syst Anal, POB 11100, FI-00076 Aalto, Finland
基金
芬兰科学院;
关键词
x-ray tomography; parallel beam tomography; optimal projections; Bayesian experimental design; A-optimality; D-optimality; sequential optimization; OPTIMAL EXPERIMENTAL-DESIGN; BAYESIAN EXPERIMENTAL-DESIGN; A-OPTIMAL DESIGN; INVERSE PROBLEMS;
D O I
10.1088/1361-6420/ac01a4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work applies Bayesian experimental design to selecting optimal projection geometries in (discretized) parallel beam x-ray tomography assuming the prior and the additive noise are Gaussian. The introduced greedy exhaustive optimization algorithm proceeds sequentially, with the posterior distribution corresponding to the previous projections serving as the prior for determining the design parameters, i.e. the imaging angle and the lateral position of the source-receiver pair, for the next one. The algorithm allows redefining the region of interest after each projection as well as adapting parameters in the (original) prior to the measured data. Both A and D-optimality are considered, with emphasis on efficient evaluation of the corresponding objective functions. Two-dimensional numerical experiments demonstrate the functionality of the approach.
引用
收藏
页数:25
相关论文
共 31 条
  • [1] EFFICIENT D-OPTIMAL DESIGN OF EXPERIMENTS FOR INFINITE-DIMENSIONAL BAYESIAN LINEAR INVERSE PROBLEMS
    Alexanderian, Alen
    Saibaba, Arvind K.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (05) : A2956 - A2985
  • [2] On Bayesian A- and D-Optimal Experimental Designs in Infinite Dimensions
    Alexanderian, Alen
    Gloor, Philip J.
    Ghattas, Omar
    [J]. BAYESIAN ANALYSIS, 2016, 11 (03): : 671 - 695
  • [3] A FAST AND SCALABLE METHOD FOR A-OPTIMAL DESIGN OF EXPERIMENTS FOR INFINITE-DIMENSIONAL BAYESIAN NONLINEAR INVERSE PROBLEMS
    Alexanderian, Alen
    Petra, Noemi
    Stadler, Georg
    Ghattas, Omar
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (01) : A243 - A272
  • [4] A-OPTIMAL DESIGN OF EXPERIMENTS FOR INFINITE-DIMENSIONAL BAYESIAN LINEAR INVERSE PROBLEMS WITH REGULARIZED l0-SPARSIFICATION
    Alexanderian, Alen
    Petra, Noemi
    Stadler, Georg
    Ghattas, Omar
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (05) : A2122 - A2148
  • [5] Atkinson A.C., 2007, Optimum Experimental Designs
  • [6] Goal-oriented optimal design of experiments for large-scale Bayesian linear inverse problems
    Attia, Ahmed
    Alexanderian, Alen
    Saibaba, Arvind K.
    [J]. INVERSE PROBLEMS, 2018, 34 (09)
  • [7] Randomized Algorithms for Estimating the Trace of an Implicit Symmetric Positive Semi-Definite Matrix
    Avron, Haim
    Toledo, Sivan
    [J]. JOURNAL OF THE ACM, 2011, 58 (02)
  • [8] Advanced x-ray tomography: experiment, modeling, and algorithms
    Batenburg, K. Joost
    De Carlo, Francesco
    Mancini, Lucia
    Sijbers, Jan
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2018, 29 (08)
  • [9] Reduction of variable-truncation artifacts from beam occlusion during in situ x-ray tomography
    Borg, Leise
    Jorgensen, Jakob S.
    Frikel, Juergen
    Sporring, Jon
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (12)
  • [10] Bayesian experimental design: A review
    Chaloner, K
    Verdinelli, I
    [J]. STATISTICAL SCIENCE, 1995, 10 (03) : 273 - 304