Enhancing methane production from anaerobic digestion of waste activated sludge with addition of sodium lauroyl sarcosinate

被引:15
|
作者
Du, Wenjie [1 ,2 ]
Huang, Xiaoding [1 ,2 ]
Zhang, Jiamin [1 ,2 ]
Wang, Dongbo [1 ,2 ]
Yang, Qi [1 ,2 ]
Li, Xiaoming [1 ,2 ]
机构
[1] Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Peoples R China
[2] Hunan Univ, Minist Educ, Key Lab Environm Biol & Pollut Control, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
Methane production; Sodium lauroyl sarcosinate; Organic matters; Methanogens; CHAIN FATTY-ACIDS; DEGRADATION; BIODEGRADABILITY; METHANOGENESIS; BIOSURFACTANT; ECOTOXICITY; INHIBITION; HYDROLYSIS; KINETICS;
D O I
10.1016/j.biortech.2021.125321
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
In this study, sodium lauroyl sarcosinate (SLS) was used to promote anaerobic digestion of waste activated sludge for producing methane. It was found maximum cumulative methane production increased from 98.1 +/- 3.1 to 166.0 +/- 4.3 mL/g Volatile Suspended Solids (VSS) with dosage increasing from 0 (control) to 40 mg SLS/g TSS. But the addition of SLS (>10 mg SLS/g Total Suspended Solids (TSS)) resulted in prolonged lag phase time. Microbiological analysis showed that Syntrophobacter and Syntrophomonas both got enriched in reactors fed with SLS. Furthermore, hydrogenotrophic methanogens genus got more enrichment in contrast to acetoclastic methanogens. Mechanism analysis indicated that addition SLS could decrease surface tension, and promote release of organic matters as well as improve activities of hydrolytic enzymes. Besides, SLS could be nearly degraded completely within 3 days, and its degradation intermediates could be further transformed into methane gradually, thus enhancing methane production eventually.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Enhancing methane production from anaerobic digestion of secondary sludge through lignosulfonate addition: Feasibility, mechanisms, and implications
    Wang, Zhenyao
    Li, Xuan
    Liu, Huan
    Zhou, Ting
    Li, Jibin
    Siddiqui, Muhammad Ahmar
    Lin, Carol Sze Ki
    Hatshan, Mohammad Rafe
    Huang, Siyu
    Cairney, Julie M.
    Wang, Qilin
    BIORESOURCE TECHNOLOGY, 2023, 390
  • [32] Effect of activated carbon/graphite on enhancing anaerobic digestion of waste activated sludge
    Wu, Fei
    Xie, Jiaqian
    Xin, Xiaodong
    He, Junguo
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [33] Polyamide 6 microplastics facilitate methane production during anaerobic digestion of waste activated sludge
    Chen, Hongbo
    Tang, Mengge
    Yang, Xiao
    Tsang, Yiu Fai
    Wu, Yanxin
    Wang, Dongbo
    Zhou, Yaoyu
    CHEMICAL ENGINEERING JOURNAL, 2021, 408
  • [34] Influence of surfactants on anaerobic digestion of waste activated sludge: acid and methane production and pollution removal
    He, Qingyun
    Xu, Piao
    Zhang, Chen
    Zeng, Guangming
    Liu, Zhifeng
    Wang, Dongbo
    Tang, Wangwang
    Dong, Haoran
    Tan, Xiaofei
    Duan, Abing
    CRITICAL REVIEWS IN BIOTECHNOLOGY, 2019, 39 (05) : 746 - 757
  • [35] Mechanistic insights into the roles of ferric chloride on methane production in anaerobic digestion of waste activated sludge
    Zhan, Wei
    Tian, Yu
    Zhang, Jun
    Zuo, Wei
    Li, Lipin
    Jin, Yaruo
    Lei, Yongjia
    Xie, Ansen
    Zhang, Xiyu
    JOURNAL OF CLEANER PRODUCTION, 2021, 296
  • [36] Quorum quenching of autoinducer 2 increases methane production in anaerobic digestion of waste activated sludge
    Sarah Sabidi
    Yuki Hoshiko
    Toshinari Maeda
    Applied Microbiology and Biotechnology, 2022, 106 : 4763 - 4774
  • [37] Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production
    Liu, Wenzong
    Cai, Weiwei
    Guo, Zechong
    Wang, Ling
    Yang, Chunxue
    Varrone, Cristiano
    Wang, Aijie
    RENEWABLE ENERGY, 2016, 91 : 334 - 339
  • [38] Quorum quenching of autoinducer 2 increases methane production in anaerobic digestion of waste activated sludge
    Sabidi, Sarah
    Hoshiko, Yuki
    Maeda, Toshinari
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2022, 106 (12) : 4763 - 4774
  • [39] Methane production from oil refinery, waste-activated sludge by two-phase anaerobic digestion
    Wang, Qinghong
    Chen, Chunmao
    Guo, Shaohui
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [40] The inhibitory impacts of nano-graphene oxide on methane production from waste activated sludge in anaerobic digestion
    Dong, Bin
    Xia, Zhaohui
    Sun, Jing
    Dai, Xiaohu
    Chen, Xueming
    Ni, Bing-Jie
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 646 (1376-1384) : 1376 - 1384