Which circulant preconditioner is better?

被引:30
作者
Strela, VV [1 ]
Tyrtyshnikov, EE [1 ]
机构
[1] RUSSIAN ACAD SCI,INST NUMER MATH,MOSCOW 117334,RUSSIA
关键词
preconditioning; eigenvalue clustering; circulants; Toeplitz matrices; Fourier series;
D O I
10.1090/S0025-5718-96-00682-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The eigenvalue clustering of matrices S(n)(-1)A(n) and C(n)(-1)A(n) is experimentally studied, where A(n), S-n and C-n respectively are Toeplitz matrices, Strang, and optimal circulant preconditioners generated by the Fourier expansion of a function f(x). Some illustrations are given to show how the clustering depends on the smoothness of f(x) and which preconditioner is preferable. An original technique for experimental exploration of the clustering rate is presented. This technique is based on the bisection idea and on the Toeplitz decomposition of a three-matrix product CAC, where A is a Toeplitz matrix and C is a circulant. In particular, it is proved that the Toeplitz (displacement) rank of CAC is not greater than 4, provided that C and A are symmetric.
引用
收藏
页码:137 / 150
页数:14
相关论文
共 16 条
[1]  
[Anonymous], TOEPLITZ MATRICES SO
[2]   ON THE RATE OF CONVERGENCE OF THE PRECONDITIONED CONJUGATE-GRADIENT METHOD [J].
AXELSSON, O ;
LINDSKOG, G .
NUMERISCHE MATHEMATIK, 1986, 48 (05) :499-523
[3]   TOEPLITZ EQUATIONS BY CONJUGATE GRADIENTS WITH CIRCULANT PRECONDITIONER [J].
CHAN, RH ;
STRANG, G .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (01) :104-119
[4]   THE SPECTRA OF SUPEROPTIMAL CIRCULANT PRECONDITIONED TOEPLITZ-SYSTEMS [J].
CHAN, RH ;
JIN, XQ ;
YEUNG, MC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (03) :871-879
[6]   AN OPTIMAL CIRCULANT PRECONDITIONER FOR TOEPLITZ-SYSTEMS [J].
CHAN, TF .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (04) :766-771
[7]  
GOHBERG I, 1986, LINEAR ALGEBRA APPL, V80, P80
[8]   DISPLACEMENT RANKS OF MATRICES AND LINEAR EQUATIONS [J].
KAILATH, T ;
KUNG, SY ;
MORF, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 68 (02) :395-407
[9]  
STRANG G, 1986, STUD APPL MATH, V74, P171
[10]  
STRELA V, 1993, MATRIX METHODS ALGOR, P9