Uniqueness implies existence for three-point boundary value problems for dynamic equations

被引:7
作者
Henderson, J [1 ]
Tisdell, CC
Yin, WKC
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
[2] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
[3] LaGrange Coll, Dept Math, La Grange, GA 30240 USA
关键词
time scale; boundary value problem; dynamic equation; shooting method;
D O I
10.1016/j.am1.2003.08.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Shooting methods are used to obtain solutions of the three-point boundary value problem for the second-order dynamic equation, y(DeltaDelta) = f(x, y, y(Delta)), y(x(1)) = y(1), y(x(3)) - y(x(2)) = y(2), where f : (a, b)(T) x R-2 --> R is continuous, x(1) < x(2) < x(3) in (a, b)(T), y(1),y(2) is an element of R, and T is a time scale. It is assumed such solutions are unique when they exist. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1391 / 1395
页数:5
相关论文
共 21 条
[1]  
Anderson DR, 2003, DYNAM SYST APPL, V12, P393
[2]  
ANDERSON DR, TWIN N POINT BOUNDAR
[3]   Existence of multiple positive solutions for nonlinear m-point boundary value problems [J].
Bai, CZ ;
Fang, JX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 281 (01) :76-85
[4]  
Bohner M., 2001, Dynamic Equations on Time Scales: AnIntroduction With Applications, DOI DOI 10.1007/978-1-4612-0201-1
[5]   Uniqueness implies existence on time scales [J].
Chyan, CJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 258 (01) :359-365
[6]  
DAVIS J. M., 1998, PanAmer. Math. J., V8, P23
[7]  
GUPTA CP, 1998, CANAD APPL MATH Q, V6, P45
[10]  
Henderson J, 2003, DYN SYST APPL, V12, P159