Self-Assembly of Flexible Free-Standing 3D Porous MoS2-Reduced Graphene Oxide Structure for High-Performance Lithium-Ion Batteries

被引:161
作者
Chao, Yunfeng [1 ]
Jalili, Rouhollah [1 ]
Ge, Yu [1 ]
Wang, Caiyun [1 ]
Zheng, Tian [1 ]
Shu, Kewei [1 ]
Wallace, Gordon G. [1 ]
机构
[1] Univ Wollongong, AIIM Facil, Intelligent Polymer Res Inst, ARC Ctr Excellence Electromat Sci, Innovat Campus, Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会;
关键词
3D porous structure; free-standing films; lithium-ion batteries; MoS2-graphene composites; self-assembly; LIQUID-CRYSTALLINE DISPERSIONS; MOS2; NANOSHEETS; ENERGY-STORAGE; ELECTRODE MATERIALS; COMPOSITE FIBERS; ANODE MATERIAL; HIGH-CAPACITY; LI-ION; CARBON; FOAM;
D O I
10.1002/adfm.201700234
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Flexible freestanding electrodes are highly desired to realize wearable/flexible batteries as required for the design and production of flexible electronic devices. Here, the excellent electrochemical performance and inherent flexibility of atomically thin 2D MoS2 along with the self-assembly properties of liquid crystalline graphene oxide (LCGO) dispersion are exploited to fabricate a porous anode for high-performance lithium ion batteries. Flexible, free-standing MoS2-reduced graphene oxide (MG) film with a 3D porous structure is fabricated via a facile spontaneous self-assembly process and subsequent freeze-drying. This is the first report of a one-pot self-assembly, gelation, and subsequent reduction of MoS2/LCGO composite to form a flexible, high performance electrode for charge storage. The gelation process occurs directly in the mixed dispersion of MoS2 and LCGO nanosheets at a low temperature (70 degrees C) and normal atmosphere (1 atm). The MG film with 75 wt% of MoS2 exhibits a high reversible capacity of 800 mAh g(-1) at a current density of 100 mA g(-1). It also demonstrates excellent rate capability, and excellent cycling stability with no capacity drop over 500 charge/discharge cycles at a current density of 400 mA g(-1).
引用
收藏
页数:10
相关论文
共 51 条
[1]   High-Performance Multifunctional Graphene Yarns: Toward Wearable All-Carbon Energy Storage Textiles [J].
Aboutalebi, Seyed Hamed ;
Jalili, Rouhollah ;
Esrafilzadeh, Dorna ;
Salari, Maryam ;
Gholamvand, Zahra ;
Yamini, Sima Aminorroaya ;
Konstantinov, Konstantin ;
Shepherd, Roderick L. ;
Chen, Jun ;
Moulton, Simon E. ;
Innis, Peter Charles ;
Minett, Andrew I. ;
Razal, Joselito M. ;
Wallace, Gordon G. .
ACS NANO, 2014, 8 (03) :2456-2466
[2]  
Acerce M, 2015, NAT NANOTECHNOL, V10, P313, DOI [10.1038/NNANO.2015.40, 10.1038/nnano.2015.40]
[3]   Lithium Intercalation Compound Dramatically Influences the Electrochemical Properties of Exfoliated MoS2 [J].
Ambrosi, Adriano ;
Sofer, Zdenek ;
Pumera, Martin .
SMALL, 2015, 11 (05) :605-612
[4]   Synthesis and electrochemical performances of MoS2/C fibers as anode material for lithium-ion battery [J].
Chen, Xiao ;
Li, Lin ;
Wang, Shiquan ;
Feng, Chuanqi ;
Guo, Zaiping .
MATERIALS LETTERS, 2016, 164 :595-598
[5]   3D MoS2-Graphene Microspheres Consisting of Multiple Nanospheres with Superior Sodium Ion Storage Properties [J].
Choi, Seung Ho ;
Ko, You Na ;
Lee, Jung-Kul ;
Kang, Yun Chan .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (12) :1780-1788
[6]   Iodide-mediated room temperature reduction of graphene oxide: a rapid chemical route for the synthesis of a bifunctional electrocatalyst [J].
Das, Ashok Kumar ;
Srivastav, Manish ;
Layek, Rama K. ;
Uddin, Md Elias ;
Jung, Daeseung ;
Kim, Nam Hoon ;
Lee, Joong Hee .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (05) :1332-1340
[7]   Self-assembled MoS2-carbon nanostructures: influence of nanostructuring and carbon on lithium battery performance [J].
Das, Shyamal K. ;
Mallavajula, Rajesh ;
Jayaprakash, Navaneedhakrishnan ;
Archer, Lynden A. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (26) :12988-12992
[8]   MoS2/Graphene Composite Paper for Sodium-Ion Battery Electrodes [J].
David, Lamuel ;
Bhandavat, Romil ;
Singh, Gurpreet .
ACS NANO, 2014, 8 (02) :1759-1770
[9]   High-Performance Multifunctional Graphene-PLGA Fibers: Toward Biomimetic and Conducting 3D Scaffolds [J].
Esrafilzadeh, Dorna ;
Jalili, Rouhollah ;
Stewart, Elise M. ;
Aboutalebi, Seyed H. ;
Razal, Joselito M. ;
Moulton, Simon E. ;
Wallace, Gordon G. .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (18) :3105-3117
[10]   Chemically converted graphene: scalable chemistries to enable processing and fabrication [J].
Gambhir, Sanjeev ;
Jalili, Rouhollah ;
Officer, David L. ;
Wallace, Gordon G. .
NPG ASIA MATERIALS, 2015, 7 :e186-e186