MAX-CUT and MAX-BISECTION are NP-hard on unit disk graphs

被引:22
作者
Diaz, Josep [1 ]
Kaminski, Marcin
机构
[1] Univ Politecn Catalunya, Lleguatges Sistemes Informat, ES-08034 Barcelona, Spain
[2] Rutgers State Univ, RUTCOR, Piscataway, NJ 08854 USA
关键词
computational complexity; max-cut; max-bisection; NP-hard; unit disk graphs;
D O I
10.1016/j.tcs.2007.02.013
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that the MAX-CUT and MAX-BISECTION problems are NP-hard on unit disk graphs. We also show that X-precision aphs are planar for lambda > 1/root 2- and give a dichotomy theorem for MAX-CUT computational complexity on X-precision unit disk graphs. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:271 / 276
页数:6
相关论文
共 15 条
[1]   Wireless sensor networks: a survey [J].
Akyildiz, IF ;
Su, W ;
Sankarasubramaniam, Y ;
Cayirci, E .
COMPUTER NETWORKS, 2002, 38 (04) :393-422
[2]  
Bodlaender H. L., 2000, Nordic Journal of Computing, V7, P14
[3]   Unit disk graph recognition is NP-hard [J].
Breu, H ;
Kirkpatrick, DG .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1998, 9 (1-2) :3-24
[4]   UNIT DISK GRAPHS [J].
CLARK, BN ;
COLBOURN, CJ ;
JOHNSON, DS .
DISCRETE MATHEMATICS, 1990, 86 (1-3) :165-177
[5]   Approximating layout problems on random geometric graphs [J].
Diaz, J ;
Penrose, MD ;
Petit, J ;
Serna, M .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2001, 39 (01) :78-116
[6]  
Garey MR, 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[7]  
Golumbic MC., 1980, Algorithmic Graph Theory and Perfect Graphs
[8]  
Hadlock F., 1975, SIAM Journal on Computing, V4, P221, DOI 10.1137/0204019
[9]   NC-approximation schemes for NP- and PSPACE-hard problems for geometric graphs [J].
Hunt, HB ;
Marathe, MV ;
Radhakrishnan, V ;
Ravi, SS ;
Rosenkrantz, DJ ;
Stearns, RE .
JOURNAL OF ALGORITHMS, 1998, 26 (02) :238-274
[10]   Polynomial time approximation schemes for max-bisection on planar and geometric graphs [J].
Jansen, K ;
Karpinski, M ;
Lingas, A ;
Seidel, E .
SIAM JOURNAL ON COMPUTING, 2005, 35 (01) :110-119