Uniform Decay for the Coupled Klein-Gordon-Schrodinger Equation with Linear Memory

被引:3
作者
Park, Jong Yeoul [2 ]
Kim, Jung Ae [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 305701, South Korea
[2] Pusan Natl Univ, Dept Math, Coll Sci, Pusan 609735, South Korea
关键词
Klein-Gordon-Schrodinger equation; Faedo-Galerkin approximation; Energy methods;
D O I
10.1007/s10440-009-9432-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we prove the existence and uniform decay of the solution to the mixed problem for coupled Klein-Gordon-Schrodinger equation with memory term. The existence is proved by means of the Faedo-Galerkin method and the asymptotic behavior is obtained by making use of the multiplier technique combined with integral inequalities due to Komornik.
引用
收藏
页码:449 / 467
页数:19
相关论文
共 35 条
[31]   GLOBAL WELL-POSEDNESS FOR THE KLEIN-GORDON-SCHRODINGER SYSTEM WITH HIGHER ORDER COUPLING [J].
Soenjaya, Agus Leonardi .
MATHEMATICA BOHEMICA, 2021, :461-470
[32]   New and More Solitary Wave Solutions for the Klein-Gordon-Schrodinger Model Arising in Nucleon-Meson Interaction [J].
Raza, Nauman ;
Arshed, Saima ;
Butt, Asma Rashid ;
Baleanu, Dumitru .
FRONTIERS IN PHYSICS, 2021, 9
[33]   Uniform exponential attractors for non-autonomous Klein Gordon SchrOdinger lattice systems in weighted spaces [J].
Abdallah, Ahmed Y. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 127 :279-297
[34]   Semi-explicit symplectic partitioned Runge-Kutta Fourier pseudo-spectral scheme for Klein-Gordon-Schrodinger equations [J].
Kong, Linghua ;
Zhang, Jingjing ;
Cao, Ying ;
Duan, Yali ;
Huang, Hong .
COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (08) :1369-1377
[35]   IMPROVED UNIFORM ERROR BOUNDS OF AN EXPONENTIAL WAVE INTEGRATOR METHOD FOR THE KLEIN-GORDON-SCHRO<spacing diaeresis>DINGER EQUATION WITH THE SMALL COUPLING CONSTANT [J].
Li, Jiyong .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2024, 22 (03) :583-612