Fermion Sampling: A Robust Quantum Computational Advantage Scheme Using Fermionic Linear Optics and Magic Input States

被引:15
作者
Oszmaniec, Michal [1 ]
Dangniam, Ninnat [1 ]
Morales, Mauro E. S. [2 ]
Zimboras, Zoltan [3 ,4 ,5 ]
机构
[1] Polish Acad Sci, Ctr Theoret Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland
[2] Univ Technol Sydney, Ctr Quantum Computat & Commun Technol, Ctr Quantum Software & Informat, Sydney, NSW 2007, Australia
[3] Wigner Res Ctr Phys, H-1121 Budapest, Hungary
[4] MTA BME Lendulet Quantum Informat Theory Res Grp, Budapest, Hungary
[5] Budapest Univ Technol & Econ, Math Inst, H-1111 Budapest, Hungary
来源
PRX QUANTUM | 2022年 / 3卷 / 02期
关键词
CLASSICAL SIMULATION; CIRCUITS; POLYNOMIALS; SUPREMACY; BOUNDS; HARD;
D O I
10.1103/PRXQuantum.3.020328
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fermionic linear optics (FLO) is a restricted model of quantum computation, which in its original form is known to be efficiently classically simulable. We show that, when initialized with suitable input states, FLO circuits can be used to demonstrate quantum computational advantage with strong hardness guarantees. Based on this, we propose a quantum advantage scheme, which is a fermionic analog of boson sampling: fermion sampling with magic input states. We consider in parallel two classes of circuits: particle-number conserving (passive) FLO and active FLO that preserves only fermionic parity. Using low-dimensional continuous symmetry groups that underpin these classes of quantum circuits, we prove anticoncentration and robust average-case hardness of computation of output probabilities probabilities. Taken together, these findings provide hardness guarantees comparable to the paradigm of random circuit sampling and boson sampling, the leading candidates for attaining quantum computational advantage. Our scheme is experimentally feasible. FLO circuits are relevant for quantum chemistry and many-body physics, and have been successfully implemented in superconducting architectures. We also argue that due to the structured nature of FLO circuits, they can be efficiently certified using resources scaling polynomially with the system size, with partial trust in the quantum device.
引用
收藏
页数:54
相关论文
共 118 条
  • [11] Aubrun G., 2017, Mathematical surveys and monographs
  • [12] Molecular docking with Gaussian Boson Sampling
    Banchi, Leonardo
    Fingerhuth, Mark
    Babej, Tomas
    Ing, Christopher
    Arrazola, Juan Miguel
    [J]. SCIENCE ADVANCES, 2020, 6 (23)
  • [13] Charge detection enables free-electron quantum computation
    Beenakker, CWJ
    DiVincenzo, DP
    Emary, C
    Kindermann, M
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (02) : 020501 - 1
  • [14] Architectures for Quantum Simulation Showing a Quantum Speedup
    Bermejo-Vega, Juan
    Hangleiter, Dominik
    Schwarz, Martin
    Raussendorf, Robert
    Eisert, Jens
    [J]. PHYSICAL REVIEW X, 2018, 8 (02):
  • [15] Electron quantum optics in ballistic chiral conductors
    Bocquillon, Erwann
    Freulon, Vincent
    Parmentier, Francois D.
    Berroir, Jean-Marc
    Placais, Bernard
    Wahl, Claire
    Rech, Jerome
    Jonckheere, Thibaut
    Martin, Thierry
    Grenier, Charles
    Ferraro, Dario
    Degiovanni, Pascal
    Feve, Gwendal
    [J]. ANNALEN DER PHYSIK, 2014, 526 (1-2) : 1 - 30
  • [16] Characterizing quantum supremacy in near-term devices
    Boixo, Sergio
    Isakov, Sergei, V
    Smelyanskiy, Vadim N.
    Babbush, Ryan
    Ding, Nan
    Jiang, Zhang
    Bremner, Michael J.
    Martinis, John M.
    Neven, Hartmut
    [J]. NATURE PHYSICS, 2018, 14 (06) : 595 - 600
  • [17] Bouland A., 2021, ARXIV EPRINTS ARXIV2
  • [18] Complexity Classification of Conjugated Clifford Circuits
    Bouland, Adam
    Fitzsimons, Joseph F.
    Koh, Dax Enshan
    [J]. 33RD COMPUTATIONAL COMPLEXITY CONFERENCE (CCC 2018), 2018, 102
  • [19] On the complexity and verification of quantum random circuit sampling
    Bouland, Adam
    Fefferman, Bill
    Nirkhe, Chinmay
    Vazirani, Umesh
    [J]. NATURE PHYSICS, 2019, 15 (02) : 159 - +
  • [20] Universal quantum computation with the ν=5/2 fractional quantum Hall state
    Bravyi, S
    [J]. PHYSICAL REVIEW A, 2006, 73 (04):