Fermion Sampling: A Robust Quantum Computational Advantage Scheme Using Fermionic Linear Optics and Magic Input States

被引:15
作者
Oszmaniec, Michal [1 ]
Dangniam, Ninnat [1 ]
Morales, Mauro E. S. [2 ]
Zimboras, Zoltan [3 ,4 ,5 ]
机构
[1] Polish Acad Sci, Ctr Theoret Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland
[2] Univ Technol Sydney, Ctr Quantum Computat & Commun Technol, Ctr Quantum Software & Informat, Sydney, NSW 2007, Australia
[3] Wigner Res Ctr Phys, H-1121 Budapest, Hungary
[4] MTA BME Lendulet Quantum Informat Theory Res Grp, Budapest, Hungary
[5] Budapest Univ Technol & Econ, Math Inst, H-1111 Budapest, Hungary
来源
PRX QUANTUM | 2022年 / 3卷 / 02期
关键词
CLASSICAL SIMULATION; CIRCUITS; POLYNOMIALS; SUPREMACY; BOUNDS; HARD;
D O I
10.1103/PRXQuantum.3.020328
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fermionic linear optics (FLO) is a restricted model of quantum computation, which in its original form is known to be efficiently classically simulable. We show that, when initialized with suitable input states, FLO circuits can be used to demonstrate quantum computational advantage with strong hardness guarantees. Based on this, we propose a quantum advantage scheme, which is a fermionic analog of boson sampling: fermion sampling with magic input states. We consider in parallel two classes of circuits: particle-number conserving (passive) FLO and active FLO that preserves only fermionic parity. Using low-dimensional continuous symmetry groups that underpin these classes of quantum circuits, we prove anticoncentration and robust average-case hardness of computation of output probabilities probabilities. Taken together, these findings provide hardness guarantees comparable to the paradigm of random circuit sampling and boson sampling, the leading candidates for attaining quantum computational advantage. Our scheme is experimentally feasible. FLO circuits are relevant for quantum chemistry and many-body physics, and have been successfully implemented in superconducting architectures. We also argue that due to the structured nature of FLO circuits, they can be efficiently certified using resources scaling polynomially with the system size, with partial trust in the quantum device.
引用
收藏
页数:54
相关论文
共 118 条
  • [1] Aaronson S, 2014, QUANTUM INF COMPUT, V14, P1383
  • [2] Aaronson S, 2011, ACM S THEORY COMPUT, P333
  • [3] Aleksandrowicz G., 2019, METHOD PRODUCING HUM, P55
  • [4] [Anonymous], FLO OPERATORS THEMSE
  • [5] [Anonymous], INFORM P IS COMPLEXI
  • [6] BosonSampling is robust against small errors in the network matrix
    Arkhipov, Alex
    [J]. PHYSICAL REVIEW A, 2015, 92 (06):
  • [7] Arora S, 2009, COMPUTATIONAL COMPLEXITY: A MODERN APPROACH, P1, DOI 10.1017/CBO9780511804090
  • [8] Using Gaussian Boson Sampling to Find Dense Subgraphs
    Arrazola, Juan Miguel
    Bromley, Thomas R.
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (03)
  • [9] Quantum approximate optimization with Gaussian boson sampling
    Arrazola, Juan Miguel
    Bromley, Thomas R.
    Rebentrost, Patrick
    [J]. PHYSICAL REVIEW A, 2018, 98 (01)
  • [10] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +