Toward a metabolic theory of life history

被引:65
作者
Burger, Joseph Robert [1 ,2 ]
Hou, Chen [3 ]
Brown, James H. [4 ]
机构
[1] Duke Univ, Populat Res Inst, Durham, NC 27705 USA
[2] Univ Arizona, Inst Environm, Tucson, AZ 85721 USA
[3] Missouri Univ Sci & Technol, Dept Biol Sci, Rolla, MO 65409 USA
[4] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA
关键词
biodiversity; unified theories; metabolic ecology; biophysical constraints; demography; NATURAL MORTALITY; GENERAL-MODEL; TRADE-OFF; SIZE; GROWTH; EFFICIENCIES; PARAMETERS; BALANCE;
D O I
10.1073/pnas.1907702116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The life histories of animals reflect the allocation of metabolic energy to traits that determine fitness and the pace of living. Here, we extend metabolic theories to address how demography and mass-energy balance constrain allocation of biomass to survival, growth, and reproduction over a life cycle of one generation. We first present data for diverse kinds of animals showing empirical patterns of variation in life-history traits. These patterns are predicted by theory that highlights the effects of 2 fundamental biophysical constraints: demography on number and mortality of offspring; and mass-energy balance on allocation of energy to growth and reproduction. These constraints impose 2 fundamental trade-offs on allocation of assimilated biomass energy to production: between number and size of offspring, and between parental investment and offspring growth. Evolution has generated enormous diversity of body sizes, morphologies, physiologies, ecologies, and life histories across the millions of animal, plant, and microbe species, yet simple rules specified by general equations highlight the underlying unity of life.
引用
收藏
页码:26653 / 26661
页数:9
相关论文
共 50 条
[1]   Life-history constraints on the success of the many small eggs reproductive strategy [J].
Andersen, K. H. ;
Beyer, J. E. ;
Pedersen, M. ;
Andersen, N. G. ;
Gislason, H. .
THEORETICAL POPULATION BIOLOGY, 2008, 73 (04) :490-497
[2]   Asymptotic size determines species abundance in the marine size spectrum [J].
Andersen, K. H. ;
Beyer, J. E. .
AMERICAN NATURALIST, 2006, 168 (01) :54-61
[3]   Characteristic Sizes of Life in the Oceans, from Bacteria to Whales [J].
Andersen, K. H. ;
Berge, T. ;
Goncalves, R. J. ;
Hartvig, M. ;
Heuschele, J. ;
Hylander, S. ;
Jacobsen, N. S. ;
Lindemann, C. ;
Martens, E. A. ;
Neuheimer, A. B. ;
Olsson, K. ;
Palacz, A. ;
Prowe, A. E. F. ;
Sainmont, J. ;
Traving, S. J. ;
Visser, A. W. ;
Wadhwa, N. ;
Kiorboe, T. .
ANNUAL REVIEW OF MARINE SCIENCE, VOL 8, 2016, 8 :217-+
[4]   Trophic and individual efficiencies of size-structured communities [J].
Andersen, K. H. ;
Beyer, J. E. ;
Lundberg, P. .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2009, 276 (1654) :109-114
[5]  
[Anonymous], 2012, Metabolic Ecology: a Scaling Approach
[6]  
Babich Morrow C., 2019, MACROEVOLUTION DIMEN, DOI 10.1101/520361
[7]   Fish reproductive-energy output increases disproportionately with body size [J].
Barneche, Diego R. ;
Robertson, D. Ross ;
White, Craig R. ;
Marshall, Dustin J. .
SCIENCE, 2018, 360 (6389) :642-644
[8]   The energetics of fish growth and how it constrains food-web trophic structure [J].
Barneche, Diego R. ;
Allen, Andrew P. .
ECOLOGY LETTERS, 2018, 21 (06) :836-844
[9]  
Boltzmann L., 1886, POPULARE SCHRIFTEN E
[10]   Equal fitness paradigm explained by a trade-off between generation time and energy production rate [J].
Brown, James H. ;
Hall, Charles A. S. ;
Sibly, Richard M. .
NATURE ECOLOGY & EVOLUTION, 2018, 2 (02) :262-+