On the Naor-Reingold pseudo-random function from elliptic curves

被引:30
作者
Shparlinski, IE [1 ]
机构
[1] Macquarie Univ, Dept Comp, Sydney, NSW 2109, Australia
关键词
pseudo-random functions; elliptic curves; discrepancy; character sums;
D O I
10.1007/s002000000023
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We show that the elliptic curve analogue of the pseudo-random function, introduced recently by M. Naor and O. Reingold, produces a uniformly distributed sequence for almost all values of parameters. This result generalizes some previous results of the author about the distribution of the original function of M. Naor and O. Reingold. The proof is based on some recent bounds of character sums over subgroups of the point group of elliptic curves.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 14 条
  • [1] [Anonymous], 1995, ARITHMETIC ELLIPTIC
  • [2] BANKS W, 1999, IN PRESS LECT NOTES
  • [3] Drmota M., 1997, SEQUENCES DISCREPANC
  • [4] Griffin F, 1999, LECT NOTES COMPUT SC, V1726, P301
  • [5] KOHEL DR, 2000, IN PRESS LECT NOTES
  • [6] Konyagin S. V., 1999, CHARACTER SUMS EXPON
  • [7] Korobov N., 1972, MAT SB, V89, P659
  • [8] Korobov N. M., 1992, Mathematics and Its Applications, Soviet Series, V80
  • [9] Number-theoretic constructions of efficient pseudo-random functions
    Naor, M
    Reingold, O
    [J]. 38TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1997, : 458 - 467
  • [10] QUASI-MONTE CARLO METHODS AND PSEUDO-RANDOM NUMBERS
    NIEDERREITER, H
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (06) : 957 - 1041