Analyticity of stable invariant manifolds of 1D-semilinear parabolic equations

被引:0
作者
Fursikov, A. V. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow 119992, Russia
来源
Control Methods in PDE-Dynamical Systems | 2007年 / 426卷
关键词
semi linear parabolic equation; invariant manifold; analyticity; stabilization;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is devoted to the proof of analyticity of the stable invariant manifold in a neighborhood of the zero steady-state solution of a semilinear parabolic equation under the assumption that this steady-state solution is unstable. This investigation may have possible applications in stabilization theory for semilinear parabolic equation.
引用
收藏
页码:219 / 242
页数:24
相关论文
共 14 条
[1]  
[Anonymous], AM MATH SOC TRANSL 2
[2]  
Arnold V. I., 2000, GEOMETRIC METHODS TH
[3]  
Babin A.V., 1992, ATTRACTORS EVOLUTION
[4]   Stabilizability of Two-Dimensional Navier-Stokes Equations with Help of a Boundary Feedback Control [J].
Fursikov, A. V. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (03) :259-301
[5]  
FURSIKOV A. V., 2002, Nonlinear Problems in Mathematical Physics and Related Topics II, P137
[6]  
Fursikov AV, 2004, DISCRETE CONT DYN S, V10, P289
[7]   Stabilizability of a quasi-linear parabolic equation by means of a boundary control with feedback [J].
Fursikov, AV .
SBORNIK MATHEMATICS, 2001, 192 (3-4) :593-639
[8]   Exact controllability of the Navier-Stokes and Boussinesq equations [J].
Fursikov, AV ;
Imanuvilov, OY .
RUSSIAN MATHEMATICAL SURVEYS, 1999, 54 (03) :565-618
[9]  
Hartman P, 1964, ORDINARY DIFFERENTIA
[10]  
Henry D., 1981, GEOMETRIC THEORY SEM, DOI [10.1007/BFb0089647, DOI 10.1007/BFB0089647]