Convergence Guarantees for Moving Horizon Estimation Based on the Real-Time Iteration Scheme

被引:49
作者
Wynn, Andrew [1 ]
Vukov, Milan [2 ]
Diehl, Moritz [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Aeronaut, London, England
[2] Katholieke Univ Leuven, Elect Engn Dept ESAT, Leuven, Belgium
关键词
Moving horizon estimation (MHE); MODEL-PREDICTIVE CONTROL; STATE ESTIMATION; PARAMETER-ESTIMATION; NONLINEAR-SYSTEMS; OBSERVER DESIGN; STABILITY; EQUATIONS; ABSENCE;
D O I
10.1109/TAC.2014.2298984
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note, conditions are proven under which a real-time implementable moving horizon estimation (MHE) scheme is locally convergent. Specifically, the real-time iteration scheme of [17] is studied in which a single Gauss-Newton iteration is applied to approximate the solution to the respective MHE optimization problem at each time-step. Convergence is illustrated by a challenging small scale example, the Lorenz attractor with an unknown parameter. It is shown that the performance of the proposed real-time MHE algorithm is nearly identical to a fully converged MHE solution, while its fixed execution time per sample would allow one to solve 30 000 MHE problems per second on current hardware.
引用
收藏
页码:2215 / 2221
页数:7
相关论文
共 32 条
[1]   THE LIFTED NEWTON METHOD AND ITS APPLICATION IN OPTIMIZATION [J].
Albersmeyer, Jan ;
Diehl, Moritz .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (03) :1655-1684
[2]   Receding-horizon estimation for discrete-time linear systems [J].
Alessandri, A ;
Baglietto, M ;
Battistelli, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (03) :473-478
[3]   Moving-horizon state estimation for nonlinear discrete-time systems: New stability results and approximation schemes [J].
Alessandri, Angelo ;
Baglietto, Marco ;
Battistelli, Giorgio .
AUTOMATICA, 2008, 44 (07) :1753-1765
[4]   Advances in Moving Horizon Estimation for Nonlinear Systems [J].
Alessandri, Angelo ;
Baglietto, Marco ;
Battistelli, Giorgio ;
Zavala, Victor .
49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, :5681-5688
[5]  
[Anonymous], 1987, BONNER MATH SCHRIFTE
[6]  
[Anonymous], 1988, BONNER MATH SCHRIFTE
[7]   A hybrid redesign of Newton observers in the absence of an exact discrete-time model [J].
Biyik, E ;
Arcak, M .
SYSTEMS & CONTROL LETTERS, 2006, 55 (06) :429-436
[8]   Newton observer design in the absence of an exact discrete-time model [J].
Biyik, E ;
Arcak, M .
ACC: Proceedings of the 2005 American Control Conference, Vols 1-7, 2005, :4187-4191
[9]  
Bock H.G., 1983, NUMERICAL TREATMENT
[10]   Nonlinear filters: Beyond the Kalman filter [J].
Daum, F .
IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2005, 20 (08) :57-69