Support-type properties of generalized convex functions

被引:6
作者
Wasowicz, Szymon [1 ]
机构
[1] Univ Bielsko Biala, Dept Math & Comp Sci, PL-43309 Bielsko Biala, Poland
关键词
Chebyshev system; Convexity; Generalized convexity; Characterization of convexity; Support theorem; Unique supports; Osculatory interpolation; HADAMARD-TYPE INEQUALITIES; HIGHER-ORDER;
D O I
10.1016/j.jmaa.2009.10.070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Chebyshev systems induce in a natural way a concept of convexity. The functions convex in this sense behave in many aspects similarly to ordinary convex functions. In this paper support-type properties are investigated. Using osculatory interpolation. the existence of support-like functions is established for functions convex with respect to Chebyshev systems. Unique supports are determined. A characterization of the generalized convexity via support properties is presented. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:415 / 427
页数:13
相关论文
共 24 条
  • [11] Bessenyei M., 2004, Acta Sci. Math. (Szeged), V70, P13
  • [12] BESSENYEI M, P ROY SOC ED A UNPUB
  • [13] de Boor C., 2005, SURV APPROX THEORY, V1, P46
  • [14] GER R., 1994, WORLD SCI PUBL CO WS, V3, P255
  • [15] GREEN JW, 1953, P AM MATH SOC, V4, P391
  • [16] Hardy Godfrey Harold, 1952, Inequalities, V2nd
  • [17] HOPF E, 1926, THESIS F WILHELMS U
  • [18] Jordan C., 1965, Calculus of finite differences, V33
  • [19] KUCZMA M, 1985, PR NAUK UNIW SI KATO, V489
  • [20] Extending n-convex functions
    Pinkus, A
    Wulbert, D
    [J]. STUDIA MATHEMATICA, 2005, 171 (02) : 125 - 152