Support-type properties of generalized convex functions

被引:6
作者
Wasowicz, Szymon [1 ]
机构
[1] Univ Bielsko Biala, Dept Math & Comp Sci, PL-43309 Bielsko Biala, Poland
关键词
Chebyshev system; Convexity; Generalized convexity; Characterization of convexity; Support theorem; Unique supports; Osculatory interpolation; HADAMARD-TYPE INEQUALITIES; HIGHER-ORDER;
D O I
10.1016/j.jmaa.2009.10.070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Chebyshev systems induce in a natural way a concept of convexity. The functions convex in this sense behave in many aspects similarly to ordinary convex functions. In this paper support-type properties are investigated. Using osculatory interpolation. the existence of support-like functions is established for functions convex with respect to Chebyshev systems. Unique supports are determined. A characterization of the generalized convexity via support properties is presented. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:415 / 427
页数:13
相关论文
共 24 条
  • [1] [Anonymous], 1966, PURE APPL MATH
  • [2] [Anonymous], 2002, RGMIA MONOGRAPHS
  • [3] [Anonymous], 2005, AEQUATIONES MATH
  • [4] Beckenbach E.F., 1937, Bull. Amer. Math. Soc, V43, P363
  • [5] Characterizations of convexity via Hadamard's inequality
    Bessenyei, M
    Páles, Z
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2006, 9 (01): : 53 - 62
  • [6] Bessenyei M, 2004, PUBL MATH DEBRECEN, V65, P223
  • [7] Bessenyei M, 2003, MATH INEQUAL APPL, V6, P379
  • [8] Bessenyei M, 2002, PUBL MATH DEBRECEN, V61, P623
  • [9] Bessenyei M., 2008, J. Inequal. Pure Appl. Math., V9
  • [10] BESSENYEI M, J MATH ANAL AP UNPUB