Oxidation mechanism and ferryl domain formation on the α-Fe2O3 (0001) surface

被引:29
作者
Jarvis, Emily A. [1 ]
Chaka, Anne M. [1 ]
机构
[1] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA
关键词
density functional calculations; hematite surfaces; oxidation; oxygen dissociation; reaction mechanisms;
D O I
10.1016/j.susc.2007.02.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent experimental evidence calls for a reinterpretation of the oxidized structure in chemically distinct domains of the hematite (0001) surface as the ferryl (Fe=O) termination rather than the bulk terminated O-3-Fe-Fe-R structure. Although this interpretation is consistent with experimental data and ab initio thermodynamics calculations, it raises serious questions about how molecular oxygen can be dissociated on a surface where reactive iron centers are slightly more than 5 angstrom apart. Here, we propose a novel cooperative bimolecular mechanism that provides a reasonable pathway for the formation of the unusual ferryl surface termination and should be readily reversible, which is important for understanding the function of hematite surfaces as an oxidation catalyst. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1909 / 1914
页数:6
相关论文
共 50 条
[21]   Initial water adsorption on hematite (α-Fe2O3) (0001): A DFT + U study [J].
Wang, Richard B. ;
Hellman, Anders .
JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (09)
[22]   Interfacial reactivity of magnetic exchange coupled Co/α-Fe2O3(0001) interfaces [J].
Bezencenet, O. ;
Barbier, A. ;
Ohresser, P. ;
Belkhou, R. ;
Stanescu, S. ;
Owens, J. ;
Guittet, M.-J. .
SURFACE SCIENCE, 2007, 601 (18) :4321-4325
[23]   Water adsorption and dissociation on α-Fe2O3(0001): PBE+U calculations [J].
Manh-Thuong Nguyen ;
Seriani, Nicola ;
Gebauer, Ralph .
JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (19)
[24]   Roles of Fe2+, Fe3+, and Cr3+ surface sites in the oxidation of NO on the (Fe,Cr)3O4(111) surface termination of an α-(Fe,Cr)2O3(0001) mixed oxide [J].
Henderson, M. A. .
JOURNAL OF CATALYSIS, 2014, 318 :53-60
[25]   First-principles study on the heterogeneous formation of environmentally persistent free radicals (EPFRs) over α-Fe2O3(0001) surface: Effect of oxygen vacancy [J].
Pan, Wenxiao ;
He, Shuming ;
Xue, Qiao ;
Liu, Xian ;
Fu, Jianjie ;
Xiao, Kang ;
Zhang, Aiqian .
JOURNAL OF ENVIRONMENTAL SCIENCES, 2024, 142 :279-289
[26]   Catalytic Properties of the Fe2O3–MnO System for Ammonia Oxidation [J].
N. I. Zakharchenko .
Kinetics and Catalysis, 2001, 42 :679-685
[27]   Titanium-doped γ-Fe2O3: Reduction and oxidation properties [J].
I. Ayub ;
F. J. Berry ;
E. Crabb ;
Ö. Helgason .
Journal of Materials Science, 2004, 39 :6921-6927
[28]   A study of water influence on carbon monoxide adsorption and oxidation on nanocrystals of:: γ-Fe2O3, Au/Fe2O3 and MnxZn1-xFe2O4 [J].
Dondur, V. ;
Radic, N. ;
Grbic, B. ;
Drofenik, M. .
RECENT DEVELOPMENTS IN ADVANCED MATERIALS AND PROCESSES, 2006, 518 :85-90
[29]   The toxicity and DNA-damage mechanism of α-Fe2O3 nanoparticles [J].
Wang, Xiaoxing ;
Gu, Yan ;
Johnson, Davidmark ;
Chen, Chuncheng ;
Huang, Yingping .
MEDICINAL CHEMISTRY RESEARCH, 2017, 26 (02) :384-389
[30]   Synthesis of Fe3O4, Fe2O3, Ag/Fe3O4 and Ag/Fe2O3 nanoparticles and their electrocatalytic properties [J].
Pan Lu ;
Tang Jing ;
Chen YongHong .
SCIENCE CHINA-CHEMISTRY, 2013, 56 (03) :362-369