Strong semismoothness of eigenvalues of symmetric matrices and its application to inverse eigenvalue problems

被引:69
作者
Sun, DF [1 ]
Sun, J
机构
[1] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
[2] Natl Univ Singapore, Sch Business, Singapore 119620, Singapore
[3] Natl Univ Singapore, Singapore MIT Alliance, Singapore 119620, Singapore
关键词
symmetric matrices; eigenvalues; strong semismoothness; Newton's method; inverse eigenvalue problems; quadratic convergence;
D O I
10.1137/S0036142901393814
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that the eigenvalues of a real symmetric matrix are not everywhere differentiable. A classical result of Ky Fan states that each eigenvalue of a symmetric matrix is the difference of two convex functions, which implies that the eigenvalues are semismooth functions. Based on a recent result of the authors, it is further proved in this paper that the eigenvalues of a symmetric matrix are strongly semismooth everywhere. As an application, it is demonstrated how this result can be used to analyze the quadratic convergence of Newton's method for solving inverse eigenvalue problems (IEPs) and generalized IEPs with multiple eigenvalues.
引用
收藏
页码:2352 / 2367
页数:16
相关论文
共 27 条
[1]  
[Anonymous], 1996, Matrix Analysis
[2]   A NEWTON ITERATION PROCESS FOR INVERSE EIGENVALUE PROBLEMS [J].
BIEGLERKONIG, FW .
NUMERISCHE MATHEMATIK, 1981, 37 (03) :349-354
[3]   On the convergence rate of a quasi-Newton method for inverse eigenvalue problems [J].
Chan, RH ;
Xu, SF ;
Zhou, HM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (02) :436-441
[4]  
CHEN X, IN PRESS MATH PROGRA
[5]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[6]   An algorithm for symmetric generalized inverse eigenvalue problems [J].
Dai, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 296 (1-3) :79-98
[7]  
Dai H, 1997, NUMER LINEAR ALGEBR, V4, P1
[10]   THE FORMULATION AND ANALYSIS OF NUMERICAL-METHODS FOR INVERSE EIGENVALUE PROBLEMS [J].
FRIEDLAND, S ;
NOCEDAL, J ;
OVERTON, ML .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (03) :634-667