Tumor Dormancy and Interplay with Hypoxic Tumor Microenvironment

被引:90
作者
Butturini, Elena [1 ]
de Prati, Alessandra Carcereri [1 ]
Boriero, Diana [1 ]
Mariotto, Sofia [1 ]
机构
[1] Univ Verona, Sect Biol Chem, Dept Neurosci Biomed & Movement Sci, I-37134 Verona, Italy
关键词
dormancy; tumor microenvironment; hypoxia; CANCER STEM-CELLS; INDUCIBLE FACTORS; PANCREATIC-CANCER; CYCLING HYPOXIA; HIF-ALPHA; TRANSACTIVATION DOMAIN; OXIDATIVE STRESS; ANIMAL-MODELS; AUTOPHAGY; ANGIOGENESIS;
D O I
10.3390/ijms20174305
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The tumor microenvironment is a key factor in disease progression, local resistance, immune-escaping, and metastasis. The rapid proliferation of tumor cells and the aberrant structure of the blood vessels within tumors result in a marked heterogeneity in the perfusion of the tumor tissue with regions of hypoxia. Although most of the tumor cells die in these hypoxic conditions, a part of them can adapt and survive for many days or months in a dormant state. Dormant tumor cells are characterized by cell cycle arrest in G0/G1 phase as well as a low metabolism, and are refractive to common chemotherapy, giving rise to metastasis. Despite these features, the cells retain their ability to proliferate when conditions improve. An understanding of the regulatory machinery of tumor dormancy is essential for identifying early cancer biomarkers and could provide a rationale for the development of novel agents to target dormant tumor cell populations. In this review, we examine the current knowledge of the mechanisms allowing tumor dormancy and discuss the crucial role of the hypoxic microenvironment in this process.
引用
收藏
页数:21
相关论文
共 131 条
[11]   Hypoxia Increases the Expression of Stem-Cell Markers and Promotes Clonogenicity in Glioblastoma Neurospheres [J].
Bar, Eli E. ;
Lin, Alex ;
Mahairaki, Vasiliki ;
Matsui, William ;
Eberhart, Charles G. .
AMERICAN JOURNAL OF PATHOLOGY, 2010, 177 (03) :1491-1502
[12]  
Bayer C, 2012, STRAHLENTHER ONKOL, V188, P616, DOI 10.1007/s00066-012-0085-4
[13]   Hypoxia-Induced Autophagy Is Mediated through Hypoxia-Inducible Factor Induction of BNIP3 and BNIP3L via Their BH3 Domains [J].
Bellot, Gregory ;
Garcia-Medina, Raquel ;
Gounon, Pierre ;
Chiche, Johanna ;
Roux, Daniele ;
Pouyssegur, Jacques ;
Mazure, Nathalie M. .
MOLECULAR AND CELLULAR BIOLOGY, 2009, 29 (10) :2570-2581
[14]   Quantifying transient hypoxia in human tumor xenografts by flow cytometry [J].
Bennewith, KL ;
Durand, RE .
CANCER RESEARCH, 2004, 64 (17) :6183-6189
[15]   TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling [J].
Bragado, Paloma ;
Estrada, Yeriel ;
Parikh, Falguni ;
Krause, Sarah ;
Capobianco, Carla ;
Farina, Hernan G. ;
Schewe, Denis M. ;
Aguirre-Ghiso, Julio A. .
NATURE CELL BIOLOGY, 2013, 15 (11) :1351-U210
[16]   Fluctuations in pO2 in irradiated human melanoma xenografts [J].
Brurberg, KG ;
Thuen, M ;
Ruud, EBM ;
Rofstad, EK .
RADIATION RESEARCH, 2006, 165 (01) :16-25
[17]   OXIDATIVE STRESS AND TUMOR-CELL PROLIFERATION [J].
BURDON, RH ;
GILL, V ;
RICEEVANS, C .
FREE RADICAL RESEARCH COMMUNICATIONS, 1990, 11 (1-3) :65-76
[18]   Mild oxidative stress induces S-glutathionylation of STAT3 and enhances chemosensitivity of tumoural cells to chemotherapeutic drugs [J].
Butturini, Elena ;
de Prati, Alessandra Carcereri ;
Chiavegato, Giulia ;
Rigo, Antonella ;
Cavalieri, Elisabetta ;
Darra, Elena ;
Mariotto, Sofia .
FREE RADICAL BIOLOGY AND MEDICINE, 2013, 65 :1322-1330
[19]   Regulation of cancer cell metabolism [J].
Cairns, Rob A. ;
Harris, Isaac S. ;
Mak, Tak W. .
NATURE REVIEWS CANCER, 2011, 11 (02) :85-95
[20]   Rapamycin requires AMPK activity and p27 expression for promoting autophagy-dependent Tsc2-null cell survival [J].
Campos, Tania ;
Ziehe, Javiera ;
Fuentes-Villalobos, Francisco ;
Riquelme, Orlando ;
Pena, Daniela ;
Troncoso, Rodrigo ;
Lavandero, Sergio ;
Morin, Violeta ;
Pincheira, Roxana ;
Castro, Ariel F. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2016, 1863 (06) :1200-1207