Infinitely many solutions for the p-fractional Kirchhoff equations with electromagnetic fields and critical nonlinearity

被引:5
作者
Liang, Sihua [1 ]
Zhang, Jihui [2 ]
机构
[1] Changchun Normal Univ, Coll Math, Changchun 130032, Jilin, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2018年 / 23卷 / 04期
关键词
fractional Kirchhoff equations; fractional magnetic operator; critical nonlinearity; variational methods; SCHRODINGER-EQUATIONS; EXISTENCE; MULTIPLICITY;
D O I
10.15388/NA.2018.4.9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the fractional Kirchhoff equations with electromagnetic fields and critical nonlinearity. By means of the concentration-compactness principle in fractional Sobolev space and the Kajikiya's new version of the symmetric mountain pass lemma, we obtain the existence of infinitely many solutions, which tend to zero for suitable positive parameters.
引用
收藏
页码:599 / 618
页数:20
相关论文
共 43 条
[31]  
Pucci P, 2015, CALC VAR PARTIAL DIF, V54, P2785, DOI 10.1007/s00526-015-0883-5
[32]   Existence of infinitely many solutions for degenerate p-fractional Kirchhoff equations with critical Sobolev-Hardy nonlinearities [J].
Song, Yueqiang ;
Shi, Shaoyun .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (06)
[33]  
Tavani MRH, 2017, OPUSC MATH, V37, P755, DOI 10.7494/OpMath.2017.37.5.755
[34]   GROUND STATE SOLUTIONS FOR FRACTIONAL SCHRODINGER EQUATIONS WITH CRITICAL SOBOLEV EXPONENT [J].
Teng, Kaimin ;
He, Xiumei .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (03) :991-1008
[35]  
Wang F., 2016, ELECTRON J DIFFER EQ, V2016, P306
[36]   Infinitely many solutions to elliptic systems with critical exponents and Hardy potentials [J].
Wang, Li .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (12) :1558-1568
[37]   A Nonhomogeneous Fractional p-Kirchhoff Type Problem Involving Critical Exponent in RN [J].
Xiang, Mingqi ;
Zhang, Binlin ;
Zhang, Xia .
ADVANCED NONLINEAR STUDIES, 2017, 17 (03) :611-640
[38]   NONLOCAL SCHRODINGER-KIRCHHOFF EQUATIONS WITH EXTERNAL MAGNETIC FIELD [J].
Xiang, Mingqi ;
Pucci, Patrizia ;
Squassina, Marco ;
Zhang, Binlin .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (03) :1631-1649
[39]   Multiplicity results for the non-homogeneous fractional p-Kirchhoff equations with concave-convex nonlinearities [J].
Xiang, Mingqi ;
Zhang, Binlin ;
Ferrara, Massimiliano .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2177)
[40]   Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian [J].
Xiang, Mingqi ;
Zhang, Binlin ;
Ferrara, Massimiliano .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (02) :1021-1041