Diversity of CO2-concentrating mechanisms and responses to CO2 concentration in marine and freshwater diatoms

被引:35
|
作者
Clement, Romain [1 ]
Jensen, Erik [1 ]
Prioretti, Laura [1 ]
Maberly, Stephen C. [2 ]
Gontero, Brigitte [1 ]
机构
[1] Aix Marseille Univ, CNRS, UMR 7281, BIP,IMM, 31 Chemin J Aiguier, F-13402 Marseille 20, France
[2] Lancaster Environm Ctr, Ctr Ecol & Hydrol, Lake Ecosyst Grp, Lib Ave, Lancaster LA1 4AP, England
基金
英国自然环境研究理事会;
关键词
Bicarbonate use; carbonic anhydrase; C-4; photosynthesis; carbon dioxide-concentrating mechanism; CCM; diatoms; PEP carboxylase; pH-drift; PPDK; Rubisco; PHOTOSYNTHETIC CARBON ASSIMILATION; FATTY-ACID-COMPOSITION; INORGANIC-CARBON; PHAEODACTYLUM-TRICORNUTUM; GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE; PHOSPHOENOLPYRUVATE CARBOXYKINASE; THALASSIOSIRA-PSEUDONANA; LIPID-ACCUMULATION; C-4; PHOTOSYNTHESIS; ANHYDRASE ACTIVITY;
D O I
10.1093/jxb/erx035
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The presence of CO2-concentrating mechanisms (CCMs) is believed to be one of the characteristics that allows diatoms to thrive in many environments and to be major contributors to global productivity. Here, the type of CCM and the responses to variable CO2 concentration were studied in marine and freshwater diatoms. At 400 ppm, there was a large diversity in physiological and biochemical mechanisms among the species. While Phaeodactylum tricornutum mainly used HCO3-, Thalassiosira pseudonana mainly used CO2. Carbonic anhydrase was an important component of the CCM in all species and C4 metabolism was absent, even with T. weissflogii. For all species, at 20 000 ppm, the affinity for dissolved inorganic carbon was lower than at 400 ppm CO2 and the reliance on CO2 was higher. Despite the difference in availability of inorganic carbon in marine and fresh waters, there were only small differences in CCMs between species from the two environments, and Navicula pelliculosa behaved similarly when grown in the two environments. The results suggest that species-specific differences are great, and more important than environmental differences in determining the nature and effectiveness of the CCM in diatoms.
引用
收藏
页码:3925 / 3935
页数:11
相关论文
共 50 条
  • [1] The diversity of CO2-concentrating mechanisms in marine diatoms as inferred from their genetic content
    Shen, Chen
    Dupont, Christopher L.
    Hopkinson, Brian M.
    JOURNAL OF EXPERIMENTAL BOTANY, 2017, 68 (14) : 3937 - 3948
  • [2] The potential for co-evolution of CO2-concentrating mechanisms and Rubisco in diatoms
    Young, Jodi N.
    Hopkinson, Brian M.
    JOURNAL OF EXPERIMENTAL BOTANY, 2017, 68 (14) : 3751 - 3762
  • [3] Efficiency of the CO2-concentrating mechanism of diatoms
    Hopkinson, Brian M.
    Dupont, Christopher L.
    Allen, Andrew E.
    Morel, Francois M. M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (10) : 3830 - 3837
  • [4] Molecular aspects of the biophysical CO2-concentrating mechanism and its regulation in marine diatoms
    Tsuji, Yoshinori
    Nakajima, Kensuke
    Matsuda, Yusuke
    JOURNAL OF EXPERIMENTAL BOTANY, 2017, 68 (14) : 3763 - 3772
  • [5] The nature of the CO2-concentrating mechanisms in a marine diatom, Thalassiosira pseudonana
    Clement, Romain
    Dimnet, Laura
    Maberly, Stephen C.
    Gontero, Brigitte
    NEW PHYTOLOGIST, 2016, 209 (04) : 1417 - 1427
  • [6] Origins and diversity of eukaryotic CO2-concentrating mechanisms: lessons for the future
    Meyer, Moritz
    Griffiths, Howard
    JOURNAL OF EXPERIMENTAL BOTANY, 2013, 64 (03) : 769 - 786
  • [7] The diversity and coevolution of Rubisco and CO2 concentrating mechanisms in marine macrophytes
    Capo-Bauca, Sebastia
    Iniguez, Concepcion
    Galmes, Jeroni
    NEW PHYTOLOGIST, 2024, 241 (06) : 2353 - 2365
  • [8] The physiology and genetics of CO2 concentrating mechanisms in model diatoms
    Hopkinson, Brian M.
    Dupont, Christopher L.
    Matsuda, Yusuke
    CURRENT OPINION IN PLANT BIOLOGY, 2016, 31 : 51 - 57
  • [9] Ecological imperatives for aquatic CO2-concentrating mechanisms
    Maberly, Stephen C.
    Gontero, Brigitte
    JOURNAL OF EXPERIMENTAL BOTANY, 2017, 68 (14) : 3797 - 3814
  • [10] The possible evolution and future of CO2-concentrating mechanisms
    Raven, John A.
    Beardall, John
    Sanchez-Baracaldo, Patricia
    JOURNAL OF EXPERIMENTAL BOTANY, 2017, 68 (14) : 3701 - 3716