A priori estimates or super-linear elliptic equation: the Neumann boundary value problem

被引:0
作者
Harrabi, Abdellaziz [1 ,2 ]
Rahal, Belgacem [3 ]
Selmi, Abdelbaki [1 ,4 ]
机构
[1] Northern Border Univ, Dept Math, Ar Ar, Saudi Arabia
[2] Univ Kairouan, Dept Math, Inst Super Math Appl & Informat, Kairouan, Tunisia
[3] Inst Super Sci Appl & Technol Kairouan, Ave Beit El Hikma, Kairouan 3100, Tunisia
[4] Univ Tunis, Dept Math, Fac Sci Bizerte, Zarzouna 7021, Bizerte, Tunisia
关键词
Morse index; Neumann boundary value problem; supercritical growth; Liouville-type problems; L-infinity-bounds; MORSE INDEXES; THEOREM;
D O I
10.21494/ISTE.OP.2021.0646
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the nonexistence of finite Morse index solutions of the following Neumann boundary value problems (Eq.H){-Delta u = (u(+))(p) in R-+(N), partial derivative u/partial derivative x(N) = 0 on partial derivative R-+(N), u is an element of C-2 (<(R-+(N))over bar>) and sign-changing, u(+) is bounded and i(u) < infinity (Eq.H'){-Delta u = vertical bar u vertical bar(p-1)u in R-+(N), partial derivative u/partial derivative x(N) = 0 on partial derivative R-+(N), u is an element of C-2 (<(R-+(N))over bar>), u is bounded and i(u) < infinity. As a consequence, we establish the relevant Bahri-Lions's L-infinity-estimate [3] via the boundedness of Morse index of solutions to {-Delta u = F(x,u) in Omega, partial derivative u/partial derivative v = 0 on partial derivative Omega, where f has an asymptotical behavior at infinity which is not necessarily the same at +/-infinity. Our results complete previous Liouville type theorems and L-infinity -bounds via Morse index obtained in [3, 6, 13, 16, 12, 21].
引用
收藏
页码:15 / 29
页数:15
相关论文
共 48 条
[41]   Nonexistence and Existence Results for a Fourth-Order p-Laplacian Discrete Neumann Boundary Value Problem [J].
Liu, Xia ;
Zhang, Yuanbiao ;
Deng, Xiaoqing .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (01) :87-101
[42]   Sobolev Inequality and the Exact Multiplicity of Solutions and Positive Solutions to a Second-Order Neumann Boundary Value Problem [J].
Feng, Yuqiang .
ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (02) :895-905
[43]   Sobolev Inequality and the Exact Multiplicity of Solutions and Positive Solutions to a Second-Order Neumann Boundary Value Problem [J].
Yuqiang Feng .
Acta Applicandae Mathematicae, 2010, 110 :895-905
[44]   Nonexistence and Existence Results for a Fourth-Order p-Laplacian Discrete Neumann Boundary Value Problem [J].
Xia Liu ;
Yuanbiao Zhang ;
Xiaoqing Deng .
Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 :87-101
[45]   EXISTENCE OF SOLUTIONS TO A SEMILINEAR ELLIPTIC BOUNDARY VALUE PROBLEM WITH AUGMENTED MORSE INDEX BIGGER THAN TWO [J].
Castro, Alfonso ;
Ventura, Ivan .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2017, 49 (01) :233-244
[46]   Existence results for a two point boundary value problem involving a fourth-order equation [J].
Bonanno, Gabriele ;
Chinni, Antonia ;
Tersian, Stepan A. .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2015, (33) :1-9
[47]   THREE SOLUTIONS FOR A TWO-POINT BOUNDARY VALUE PROBLEM WITH THE PRESCRIBED MEAN CURVATURE EQUATION [J].
Candito, Pasquale ;
Livrea, Roberto ;
Mawhin, Jean .
DIFFERENTIAL AND INTEGRAL EQUATIONS, 2015, 28 (9-10) :989-1010
[48]   On nonlocal Neumann boundary value problem for a second-order forward (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\alpha,\beta)$\end{document}-difference equation [J].
Thitiporn Linitda ;
Saowaluck Chasreechai .
Advances in Difference Equations, 2018 (1)