Molecular simulation of nonfacilitated membrane permeation

被引:119
作者
Awoonor-Williams, Ernest [1 ]
Rowley, Christopher N. [1 ]
机构
[1] Mem Univ Newfoundland, Dept Chem, St John, NF A1B 3X7, Canada
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES | 2016年 / 1858卷 / 07期
基金
加拿大自然科学与工程研究理事会;
关键词
Review; Membrane; Lipid bilayer; Permeation; Non-facilitated; Solubility-diffusion model; Molecular dynamics; Diffusion; PMF; Potential of mean force; Polarizable; Coarse grain; FREE-ENERGY PROFILE; NONSTEROIDAL ANTIINFLAMMATORY DRUGS; POLARIZABLE FORCE-FIELD; LIPID-BILAYER MEMBRANE; DYNAMICS SIMULATIONS; PHOSPHOLIPID-BILAYERS; NANOPARTICLE PERMEATION; WATER PERMEABILITY; PASSIVE TRANSPORT; NITRIC-OXIDE;
D O I
10.1016/j.bbamem.2015.12.014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This is a review. Non-electrolytic compounds typically cross cell membranes by passive diffusion. The rate of permeation is dependent on the chemical properties of the solute and the composition of the lipid bilayer membrane. Predicting the permeability coefficient of a solute is important in pharmaceutical chemistry and toxicology. Molecular simulation has proven to be a valuable tool for modeling permeation of solutes through a lipid bilayer. In particular, the solubility-diffusion model has allowed for the quantitative calculation of permeability coefficients. The underlying theory and computational methods used to calculate membrane permeability are reviewed. We also discuss applications of these methods to examine the permeability of solutes and the effect of membrane composition on permeability. The application of coarse grain and polarizable models is discussed. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1672 / 1687
页数:16
相关论文
共 201 条
[1]   A general purpose model for the condensed phases of water: TIP4P/2005 [J].
Abascal, JLF ;
Vega, C .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (23)
[2]   A combined NMR and molecular dynamics study of the transmembrane solubility and diffusion rate profile of dioxygen in lipid bilayers [J].
Al-Abdul-Wahid, M. Sameer ;
Yu, Ching-Hsing ;
Batruch, Ihor ;
Evanics, Ferenc ;
Pomes, Regis ;
Prosser, R. Scott .
BIOCHEMISTRY, 2006, 45 (35) :10719-10728
[3]  
Allen M. P., 1989, Computer Simulation of Liquids
[4]   Energetics of ion conduction through the gramicidin channel [J].
Allen, TW ;
Andersen, OS ;
Roux, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (01) :117-122
[5]   Permeation of ammonia across bilayer lipid membranes studied by ammonium ion selective microelectrodes [J].
Antonenko, YN ;
Pohl, P ;
Denisov, GA .
BIOPHYSICAL JOURNAL, 1997, 72 (05) :2187-2195
[6]   WEAK ACID TRANSPORT ACROSS BILAYER-LIPID MEMBRANE IN THE PRESENCE OF BUFFERS - THEORETICAL AND EXPERIMENTAL PH PROFILES IN THE UNSTIRRED LAYERS [J].
ANTONENKO, YN ;
DENISOV, GA ;
POHL, P .
BIOPHYSICAL JOURNAL, 1993, 64 (06) :1701-1710
[7]   Estimation of H2O2 gradients across biomembranes [J].
Antunes, F ;
Cadenas, E .
FEBS LETTERS, 2000, 475 (02) :121-126
[8]   Rational determination of transfer free energies of small drugs across the water-oil interface [J].
Bas, D ;
Dorison-Duval, D ;
Moreau, S ;
Bruneau, P ;
Chipot, C .
JOURNAL OF MEDICINAL CHEMISTRY, 2002, 45 (01) :151-159
[9]   Water permeation through DMPC lipid bilayers using polarizable charge equilibration force fields [J].
Bauer, Brad A. ;
Lucas, Timothy R. ;
Meninger, David J. ;
Patel, Sandeep .
CHEMICAL PHYSICS LETTERS, 2011, 508 (4-6) :289-294
[10]   Permeation of small molecules through a lipid bilayer: A computer simulation study [J].
Bemporad, D ;
Essex, JW ;
Luttmann, C .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (15) :4875-4884