HERMITE-HADAMARD TYPE INEQUALITIES FOR GEOMETRICALLY r-CONVEX FUNCTIONS

被引:24
作者
Xi, Bo-Yan [1 ]
Qi, Feng [1 ,2 ,3 ]
机构
[1] Inner Mongolia Univ Nationalities, Coll Math, Tongliao City 028043, Inner Mongolia, Peoples R China
[2] Tianjin Polytech Univ, Coll Sci, Dept Math, Tianjin 300160, Peoples R China
[3] Henan Polytech Univ, Inst Math, Jiaozuo City 454010, Henan Province, Peoples R China
关键词
Hermite-Hadamard type inequality; geometrically r-convex function; Holder's inequality; integral identity; DIFFERENTIABLE MAPPINGS; REAL NUMBERS; (ALPHA;
D O I
10.1556/SScMath.51.2014.4.1294
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, the authors introduce a new concept of geometrically r-convex functions and establish some inequalities of Hermite-Hadamard type for this class of functions.
引用
收藏
页码:530 / 546
页数:17
相关论文
共 33 条
[21]  
Niculescu CP, 2006, CMS BOOKS MATH, P1
[22]  
Noor M.A., 2013, Analysis (Munich), V33, P367, DOI 10.1524/anly.2013.1223
[23]   Stolarsky means and Hadamard's inequality [J].
Pearce, CEM ;
Pecaric, J ;
Simic, V .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 220 (01) :99-109
[24]   Inequalities for differentiable mappings with application to special means and quadrature formulae [J].
Pearce, CEM ;
Pecaric, J .
APPLIED MATHEMATICS LETTERS, 2000, 13 (02) :51-55
[25]   Some integral inequalities of Simpson type for GA-ε-convex functions [J].
Qi, Feng ;
Xi, Bo-Yan .
GEORGIAN MATHEMATICAL JOURNAL, 2013, 20 (04) :775-788
[26]  
Shuang Y, 2014, J COMPUT ANAL APPL, V17, P272
[27]  
Stolarsky K. B., 1975, Math. Mag., V48, P87
[28]   Inequalities for the weighted mean of r-convex functions [J].
Sun, MB ;
Yang, XP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) :1639-1646
[29]   INEQUALITIES OF HERMITE-HADAMARD TYPE FOR CONVEX FUNCTIONS WHICH ARE n-TIMES DIFFERENTIABLE [J].
Wang, Shu-Hong ;
Qi, Feng .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (04) :1269-1278
[30]  
Xi BY, 2013, HACET J MATH STAT, V42, P243