HERMITE-HADAMARD TYPE INEQUALITIES FOR GEOMETRICALLY r-CONVEX FUNCTIONS

被引:24
作者
Xi, Bo-Yan [1 ]
Qi, Feng [1 ,2 ,3 ]
机构
[1] Inner Mongolia Univ Nationalities, Coll Math, Tongliao City 028043, Inner Mongolia, Peoples R China
[2] Tianjin Polytech Univ, Coll Sci, Dept Math, Tianjin 300160, Peoples R China
[3] Henan Polytech Univ, Inst Math, Jiaozuo City 454010, Henan Province, Peoples R China
关键词
Hermite-Hadamard type inequality; geometrically r-convex function; Holder's inequality; integral identity; DIFFERENTIABLE MAPPINGS; REAL NUMBERS; (ALPHA;
D O I
10.1556/SScMath.51.2014.4.1294
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, the authors introduce a new concept of geometrically r-convex functions and establish some inequalities of Hermite-Hadamard type for this class of functions.
引用
收藏
页码:530 / 546
页数:17
相关论文
共 33 条
[1]   On The Hadamard's Inequality for Log-Convex Functions on the Coordinates [J].
Alomari, Mohammad ;
Darus, Maslina .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
[2]  
[Anonymous], 2013, ANALYSIS-UK, DOI DOI 10.1524/ANLY.2013.1192
[3]  
[Anonymous], 2009, International Mathematical Forum
[4]  
[Anonymous], 2013, GLOB J MATH ANAL, DOI DOI 10.13140/2.1.2919.7126
[5]  
[Anonymous], 2013, NONLINEAR FUNCTIONAL
[6]  
[Anonymous], 2013, Transylv. J. Math. Mech.
[7]  
[Anonymous], 2010, J . I n e q u a l . A p p l . , 2 0 1 0, DOI [10.1155/2010/5, DOI 10.1155/2010/5]
[8]  
[Anonymous], APPL MATH
[9]  
[Anonymous], 2001, Australian Mathematical Society Gazette
[10]  
[Anonymous], 2013, Adv. Inequal. Appl