An autologistic regression model, which takes into account neighbouring associations, was developed and applied for burned land mapping using Landsat-5 Thematic Mapper data. The integration of the autocovariate component (estimated using a moving window of 3 x 3 pixels) into the ordinary logistic regression model increased significantly the overall accuracy from 88.18% to 92.44%. In contrast, the accuracy derived with application of post-classification majority filters, which follow the same principles, were not significantly different to that derived with ordinary logistic regression.